Chalmers Astrophysics Colloquium – 21.10.2020

The Density Gradient Inside Molecular-Gas Clumps

as a Booster of their Star Formation Activity

Geneviève Parmentier

With the support and collaboration of Anna Pasquali

Astronomisches-Rechen Institut Zentrum für Astronomie Heidelberg

Germany

Star Formation Rate

The process of star formation is quantified by the star formation rate (SFR), that is, how much gas mass is turned into stars per time unit

- ➤ Krumholz & McKee (2005) → empirical parameterization of the SFR of a gas reservoir :
 - o m_{gas} is the mass of the gas reservoir
 - $\tau_{\rm ff}$ is the freefall time of the gas reservoir, calculated at the mean density of the gas $\langle \rho_{gas} \rangle$
 - ε_{ff} is the star formation efficiency per free-fall time
 (= gas mass fraction turned into stars per free-fall time)

 $SFR = rac{\varepsilon_{ff}m_{gas}}{\tau_{ff}}$

SFE and SFE per Free-Fall Time

Do not confuse:

 $\circ \quad \underline{Star \ Formation \ Efficiency \ per \ Free-Fall \ Time \ \epsilon_{ff}}: \ mass \ fraction \ of \\ gas \ which \ is \ being \ turned \ into \ stars \ over \ one \ free-fall \ time \ \tau_{ff}$

Geneviève Parmentier - Zentrum für Astronomie Heidelberg

- For any given physical time-span after the onset of star formation, molecular-gas regions of higher density achieve higher SFEs ("<u>denser is faster</u>")
- Star formation does not care about the Earth orbital period around the Sun !

- ➤ Krumholz & McKee (2005) → empirical parameterization of the SFR of a gas reservoir :
 - o m_{gas} is the mass of the gas reservoir
 - $\tau_{\rm ff}$ is the freefall time of the gas reservoir, calculated at the mean density of the gas $\langle \rho_{gas} \rangle$
 - ε_{ff} is the star formation efficiency per free-fall time
 (= gas mass fraction turned into stars per free-fall time)

 $SFR = rac{\varepsilon_{ff}m_{gas}}{\tau_{ff}}$

- ➤ Krumholz & McKee (2005) → empirical parameterization of the SFR of a gas reservoir :
 - o m_{gas} is the mass of the gas reservoir
 - $\tau_{\rm ff}$ is the freefall time of the gas reservoir, calculated at the mean density of the gas $\langle \rho_{gas} \rangle$
 - ε_{ff} is the star formation efficiency per free-fall time
 (= gas mass fraction turned into stars per free-fall time)

 $SFR = rac{\varepsilon_{ff}m_{gas}}{\tau_{ff}}$

"denser is faster"

- ➤ Krumholz & McKee (2005) → empirical parameterization of the SFR of a gas reservoir :
 - o m_{gas} is the mass of the gas reservoir
 - $\tau_{\rm ff}$ is the freefall time of the gas reservoir, calculated at the mean density of the gas $\langle \rho_{gas} \rangle$
 - ε_{ff} is the star formation efficiency per free-fall time
 (= gas mass fraction turned into stars per free-fall time)

$$SFR = \frac{ff}{\tau_{ff}}$$
$$\tau_{ff} = \sqrt{\frac{3\pi}{32G\langle \rho_{gas} \rangle}}$$

 $\mathcal{E}_{ff} m_{aas}$

- \succ How much is $\epsilon_{\rm ff}$?
- > Observers measure $\varepsilon_{\rm ff}$ as:

 $\varepsilon_{ff,meas} = \frac{SFR \ \tau_{ff}}{m_{gas}}$

measured star formation efficiency per freefall time

Geneviève Parmentier - Zentrum für Astronomie Heidelberg

Approach applied to

- molecular clumps (\cong pc-scale), aka dense molecular gas ($\rho \cong 10^3 M_{\odot} pc^{-3}$)
- o molecular clouds (≅ 50-pc scale), aka diffuse molecular gas (ρ ≅ 10M_☉ pc⁻³)
- entire galaxies (>10kpc scale) _____

<u>measured</u> star formation efficiency per freefall time

$$\varepsilon_{ff,meas} = \frac{SFR \ \tau_{ff}}{m_{gas}}$$

Approach applied to

- molecular clumps (\cong pc-scale), aka dense molecular gas ($\rho \cong 10^3 M_{\odot} pc^{-3}$)
- molecular clouds (≅ 50-pc scale),
 aka diffuse molecular gas ($\rho \cong 10 M_{\odot} pc^{-3}$)
- entire galaxies (>10kpc scale) _____

with a diversity of results being produced, e.g.:

- Krumholz & Tan (2007): ε_{ff,meas} about constant in the Galactic disk, from the diffuse CO-mapped gas to the dense HCN/CS-mapped gas
- Lee+(2016), Ochsendorf+(2017): ε_{ff,meas} varies among molecular clouds of the Galactic disk and of the Large Magellanic Cloud

<u>measured</u> star formation efficiency per freefall time

$$\varepsilon_{ff,meas} = \frac{SFR \ \tau_{ff}}{m_{gas}}$$

$$\epsilon_{\rm ff,meas} \cong 10^{-2}$$

$$SFR = \frac{\varepsilon_{ff}m_{gas}}{\tau_{ff}}$$

> Does the SFR depend only on the mass of gas available and on its volume density (i.e. its free-fall time) ?

> Insights from nearby molecular clouds. Their mean volume density does not vary very much ($\langle \rho_{cloud} \rangle \cong 10 M_{\odot} pc^{-3}$)

Correlation between the mass and SFR of a sample of nearby molecular clouds (Lada+2010/2012) (open symbols/blue line)

> To first order, the SFR of a cloud increases with its mass (i.e. more gas mass, more star formation activity)

> There is, however, a lot of scatter, implying that an additional parameter must play a pivotal role in setting the cloud SFR

This additional parameter is the cloud internal structure

Clumps of dense gas (plain symbols/red line)

The cloud SFR is more tightly correlated with the cloud dense-gas mass than with the cloud total mass

> Uncertainties in the several parameters needed to build the SFR can account for the residual scatter:

> Any additional physical parameter ?

The idea that the scatter may still bear some physical meaning was hardly brought forward

Impact of Clump Density Gradient

Global SFE

- Parmentier & Pfalzner (2013), Parmentier (2014), and subsequent publications
- Semi-analytical model of clusterforming clump:
 - E.g.: Power-law density profile of initial steepness p₀=2 with central core:

The global SFE of a clump increases faster if the clump is more <u>centrally-concentrated</u>

Impact of Clump Density Gradient

Effect anticipated by Tan+2006 already
 o For a pure power law with p<2:

$$SFR_{clump} = \frac{(3-p)^{3/2}}{2.6(2-p)} SFR_{TH}$$

TH = Top-Hat (i.e. uniform
gas volume density)

- > Also confirmed by:
 - Girichidis+2011 (hydro),
 - Cho & Kim 2011 (hydro),
 - Elmegreen 2011 (semi-analytical)

When Gas Density Gradients Get (Much) Steeper

> More recent observations (Schneider+2015) have reported much steeper density profiles in dense-gas clumps (size \cong 1pc) of two (less) nearby molecular clouds:

◦ MonR2 (distance \cong 0.8kpc): p_{equiv} = 2.9

Owing to their larger distances, these clouds were not included in the data set of Lada+2010/12

Dust-emission map of MonR2

When 0 :

> SF proceeds faster in the higherdensity central regions of the clump, BUT that does not affect much of the gas mass since the gas is not strongly centrally-concentrated

When p > 2:

> SF proceeds faster in the higher-density central regions of the clump AND this affects the bulk of the clump gas mass

When 0 < p < 2:

> SF proceeds faster in the higherdensity central regions of the clump, BUT that does not affect much of the gas mass since the gas is not strongly centrally-concentrated

When p > 2:

> SF proceeds faster in the higher-density central regions of the clump AND this affects the bulk of the clump gas mass

Unlock a regime of SF far more efficient than what has been chartered so far with $p \le 2$. How much more efficient?

Zenti

Clump SFR: Centrally-Concentrated vs. Top-Hat

Clump SFR: Centrally-Concentrated vs. Top-Hat

Magnification Factor ζ

> Magnification factor ζ:

 \rightarrow quantify by how much a given density profile amplifies the SFR of a clump compared to the SFR of its top-hat equivalent (Parmentier 2019)

Magnification Factor ζ

> Magnification factor ζ:

 \rightarrow quantify by how much a given density profile amplifies the SFR of a clump compared to the SFR of its top-hat equivalent (Parmentier 2019)

Armed with a power-law profile with a flat central core (i.e. no density singularity at the clump center)

$$\rho_{init}(r) = \frac{\rho_c}{\left(1 + \left(\frac{r}{r_c}\right)^2\right)^{p_0/2}}$$

 ρ_c : central density r_c : central core

> let us map a wider range of the parameter space, in particular, cover p > 2

Magnification Factor ζ Mapping

32

Star Formation vs. Structure Degeneracy

> If the SFR of a clump is high,

- o is it due to an intrinsically high star formation efficiency per free-fall time ($\epsilon_{ff,int}$),
- o or is the clump SFR amplified by the clump structure (ζ) ?

$$SFR_{clump} = \zeta SFR_{TH} = \zeta \varepsilon_{ff,int} \frac{m_{clump}}{\langle \tau_{ff} \rangle}$$

Star Formation vs. Structure Degeneracy

> If the SFR of a clump is high,

- o is it due to an intrinsically high star formation efficiency per free-fall time ($\epsilon_{ff,int}$),
- o or is the clump SFR amplified by the clump structure (ζ) ?

$$SFR_{clump} = \zeta SFR_{TH} = \zeta \left[\varepsilon_{ff,int} \frac{m_{clump}}{\langle \tau_{ff} \rangle} \right]$$

> The measured star formation efficiency per free-fall time $\epsilon_{ff,meas}$, being inferred from clump <u>global</u> quantities:

- o its total SFR,
- its total gas mass and,
- o its mean volume density,

 $\varepsilon_{ff,meas} = SFR_{clump} \frac{\langle \tau_{ff} \rangle}{m_{clump}}$ $= \zeta \varepsilon_{ff,int}$

Star Formation vs. Structure Degeneracy

> If the SFR of a clump is high,

- o is it due to an intrinsically high star formation efficiency per free-fall time ($\epsilon_{ff,int}$),
- o or is the clump SFR amplified by the clump structure (ζ) ?

$$SFR_{clump} = \zeta SFR_{TH} = \zeta \varepsilon_{ff,int} \frac{m_{clump}}{\langle \tau_{ff} \rangle}$$

> The measured star formation efficiency per free-fall time $\epsilon_{ff,meas}$, being inferred from clump <u>global</u> quantities:

- its total SFR,
- its total gas mass and,
- o its mean volume density,
- > What are the respective contributions to $\epsilon_{\rm ff,meas}$ of
 - $_{\odot}~$ the shell star formation activity ($\epsilon_{\rm ff,int}$),
 - the clump centrally-condensed structure (ζ)?

> Can we get out of this degeneracy ?

$$\varepsilon_{ff,meas} = SFR_{clump} \frac{\langle \tau_{ff} \rangle}{m_{clump}}$$
$$= \zeta \varepsilon_{ff,int}$$

Fig3, Parmentier 2020

- Local star formation relation:
 - local stellar surface densities vs local gas surface densities

Fig3, Parmentier 2020

- Local star formation relation:
 - local stellar surface densities vs local gas surface densities

Fig3, Parmentier 2020

- > Local star formation relation:
 - local stellar surface densities vs local gas surface densities

Fig3, Parmentier 2020

- Local star formation relation:
 - local stellar surface densities vs local gas surface densities

 $\Sigma_{stars}(r_{proj}) vs \Sigma_{gas}(r_{proj})$

- > What if we did not know the intrinsic SFE per free-fall time $\epsilon_{ff,int}$?
 - Use a ladder! A ladder of tophat profile models.

Fig3, Parmentier 2020

- > Local star formation relation:
 - local stellar surface densities vs local gas surface densities

 $\Sigma_{stars}(r_{proj}) vs \Sigma_{gas}(r_{proj})$

- > What if we did not know the intrinsic SFE per free-fall time $\epsilon_{ff,int}$?
 - Use a ladder! A ladder of tophat profile models.

Dense gas relation of nearby clouds: an update

> Lada+2010/12 (Open circles)

> Lada+2010/12 (Open circles)

> Dense-gas ratio

Comparison with CMZ Clouds

Geneviève Parmentier - Zentrum für Astronomie Heidelberg

Take-away messages

> The centrally-condensed structure of a clump can boost its star formation rate

> The global SFR of a clump is the combination of the intrinsic star formation activity of its shells ($\epsilon_{\rm ff,int}$) and of its structure (ζ)

Resolved observations hold the potential to remove the degeneracy

> Variations among $\epsilon_{ff,meas}$ are to be expected, reflecting clump structure diversity

> The dense-gas relation should now be thought of as a permitted region rather than a linear correlation

Slides of talks and links to papers available at: https://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/gparm/

50

Supplementary Material

Supplementary Material

Time-Evolution of the Gas Density Profile

- Two clumps with identical masses and radii
- > But two different density profiles:
- \circ top-hat
- centrally-concentrated (p₀=3; central core)

A central concentration hastens SF and makes it more efficient even though $\epsilon_{\rm ff, int}$ has remained unchanged

The Way Out: Method Principle

Parmentier 2020, Figs1+2