From Cluster-Forming Region Properties to Galaxy Evolution with Star Clusters

Geneviève Parmentier

Max-Planck-Institut für Radioastronomie
Argelander-Institut für Astronomie

Bonn, Deutschland
Image Credit

- **Elliptical galaxy M87** (APOD 16.06.2004):
 - Canada-France Hawaii Telescope, J.-C. Cuillandre

- **Globular Cluster M10** (APOD 30.06.2001):
 - Till Credner, Sven Kohle (Bonn University), Hoher List Observatory

- **Orion Nebula Mosaic** (HST – WFPC2):
 - O’Dell and S.K. Wong (Rice University), NASA

- **Open Cluster Pleiades M45** (APOD 01.12.2002):
 - Anglo-Australian Observatory/Royal Observatory, Edinburgh

- **Open Cluster Hyades**:

- **Spiral galaxy NGC3370** (APOD 14.05.2005):
 - Hubble Heritage Team, A. Riess (STScI) NASA
Star Clusters: at the crossroad between star formation and galaxy evolution

10pc:
individual
gas-free
star clusters

1-pc:
star formation
in embedded
star clusters

a few kpc - 100kpc:
systems of
star clusters
and galaxies
Setting the Scene: Star Clusters (SC) as Powerful Tracers of Galaxy Evolution

Star Clusters (SC):
- Compact groups of coeval stars bound together by gravity
- Identified on a one-by-one basis against the background of their host galaxy

Multi-band imaging of SC systems
- → cluster magnitudes, colours
- feasible out to Virgo Galaxy Cluster distances (≈ 20 Mpc)
- combined to Simple Stellar Population models → estimates of cluster age, mass, metallicity

Comprehensive view of galaxy-:
- chemical enrichment history,
- interaction history,
- star formation history over the past Hubble-Time

Star clusters are at the very heart of many astrophysical topics

Geneviève Parmentier - Bonn Max-Planck-Institut für Radioastronomie
The Big Issue: SCs versus field stars

Most stars in our Galaxy:

- are born in SCs → young SCs tell us about star formation
- but are observed as field stars
- SCs start losing stars as soon as they are born ...

Star clusters have the potential of tracing

- galaxy star formation histories

provided we get a firm handle on the ratio of star formation still residing in (observed) star clusters as a function of age

Violent relaxation = Most traumatizing phase

- Very short (10-50 Myr)
- SC Dynamical response to residual star-forming gas expulsion
Intra-Cluster Gas-Expulsion and Violent Relaxation

Effects of gas expulsion - VIOLENT RELAXATION

- Cluster expansion
- Star loss (infant weight-loss), or
- Cluster dissolution (infant mortality)
Violent Relaxation (VR): Observable Signatures And Prime Parameters

Effects of gas expulsion - VIOLENT RELAXATION
- Cluster expansion
- Cluster infant weight-loss and infant mortality

Observable Imprints upon Star Cluster Systems:
- Cluster mass distribution,
- Cluster age distribution,
- Cluster radius distribution

Prime parameters: (e.g. Baumgardt & Kroupa 2007)
- SFE in cluster-forming region (CFRg)
- Gas expulsion time-scale: $\tau_{\text{GExp}} / \tau_{\text{cross}}$
- Impact of external tidal field (environment)

See also Adams (2000), Vesperini et al (2009), …

Geyer & Burkert (2001)
Violent Relaxation (VR): SC Mass Functions

Time-Evolution of SC Mass Functions: What observers tell us …
No evolution of the MF shape over the first few 10Myr

\[
\frac{dN}{dm} \propto m^{-2} \\
\equiv \frac{dN}{d \log m} \propto m^{-1}
\]

\[F_{\text{bound}} = m_{\text{cluster}} \text{ (end of VR)} \]
\[= F_{\text{bound}} \times m_{\text{ecl}} \text{ (at Gas Exp)}\]

Fig 7, Chandar+2010

F_{\text{bound}} \text{ is mass-independent}

Note: what happens after 100Myr remains disputed …
SFE and SC Mass Functions

\[m_{\text{cluster}}(\text{end of VR}) = F_{\text{bound}}(SFE) \times SFE \times m_{\text{CFRg}} \]

\[F_{\text{bound}}(SFE \, \varepsilon) \]

SFE
- fraction of gas ending up in stars

\(F_{\text{bound}} \)
- fraction of stars remaining bound to the cluster at the end of VR

\(F_{\text{bound}} \) is mass-independent
\(\rightarrow \) **SFE is mass-independent**

Geneviève Parmentier - Bonn Max-Planck-Institut für Radioastronomie
$F_{\text{bound}} \left(\text{SFE} \varepsilon, \frac{\tau_{\text{GExp}}}{\tau_{\text{cross}}} \right)$

Constant radius:
more massive star cluster progenitors have
- a deeper potential well
- a slower gas-expulsion t-s
- can survive despite a low SFE of, say, 20%

F_{bound} is mass-independent
→ $\tau_{\text{GExp}}/\tau_{\text{cross}}$ is mass-independent

but looser constrain
Tidal Field Impact

\[F_{\text{bound}} \left(\frac{\text{SFE} \, \varepsilon}{\tau_{\text{cross}}}, \frac{\tau_{\text{GExp}}}{\tau_{\text{cross}}}, \frac{r_{\text{half-mass}}}{r_{\text{tidal}}} \right) \]

Half-mass radius \(r_{\text{half-mass}} \approx r_{\text{CFRg}} \)

Limiting tidal radius:

\[r_{\text{tidal}} = \left(m_{\text{ecl}} \right)^{1/3} \left(\frac{G \, D_{\text{gal}}^2}{2 \, V_c^2} \right)^{1/3} \propto \left(\text{SFE} \cdot m_{\text{CFRg}} \right)^{1/3} \]

Strong t.f. impact

Weak t.f. impact

Embedded cluster mass

SC environment
Half-Mass Radius—to—Tidal Radius Ratio

\[
\left(\frac{r_{\text{CFRg}}}{1\text{pc}} \right) = 0.01 \left(\frac{m_{\text{CFRg}}}{1\text{M}_\odot} \right)^{1/2}
\]

\[
\Sigma_{\text{CFRg}} = 0.5\text{g.cm}^{-2}
\]

\[
r_{\text{CFRg}} \propto r_{\text{half-mass}} \propto m_{\text{CFRg}}^{\delta}
\]

\[
r_{\text{tidal}} \propto m_{\text{ecl}}^{1/3} \propto m_{\text{CFRg}}^{1/3}
\]

\[
\frac{r_{\text{half-mass}}}{r_{\text{tidal}}} = m_{\text{CFRg}}^{\delta - 1/3}
\]

\[
s_{\text{ecl}} = 0.33
\]

\[
V_c = 220 \text{ km.s}^{-1}
\]

\[
D_{\text{gal}} = 4 \text{ kpc}
\]

\[
\kappa = 0.5
\]

\[
n_{\text{H}_2} = 6.10^4 \text{ cm}^{-3}
\]

\[
\rho_{\text{CFRg}} = 4000 \text{ M}_\odot\text{pc}^{-3}
\]
Bound Fractions at the End of Violent Relaxation

\[
\left(\frac{r_{\text{CFRg}}}{1\,\text{pc}} \right) = 0.01 \left(\frac{m_{\text{CFRg}}}{1\,M_\odot} \right)^{1/2}
\]

\[
\rho_{\text{CFRg}} = 4000\,M_\odot\,\text{pc}^{-3}
\]

\[
\Sigma_{\text{CFRg}} = 0.5\,\text{g}\,\text{cm}^{-2}
\]

Parmentier & Kroupa (2011)
Young SC Mass Functions

\[\frac{dN}{d \log m} = \frac{\rho_{\text{CFRg}}}{m_{\text{CFRg}}} \]

\[\frac{r_{\text{CFRg}}}{1 \text{pc}} = 0.01 \left(\frac{m_{\text{CFRg}}}{1 M_\odot} \right)^{1/2} \]

\[\Sigma_{\text{CFRg}} = 0.5 \text{g.cm}^{-2} \]

\[\rho_{\text{CFRg}} = 4000 M_\odot \cdot \text{pc}^{-3} \]

SFE = 0.33

\[\frac{V_c}{1 \text{km.s}^{-1}} = 220 \]

\[D_{\text{gal}} = 4 \text{kpc} \]

\[\kappa = 0.50 \]

Fig7, Chandar+2010
Young SC Mass Functions

Constant Mean Surface Density CFRgs:
When more massive means more vulnerable ...

Constant Mean Volume Density CFRgs:
mass-independent
Infant weight-loss

Fig7, Chandar+2010
A Volume Density Threshold for the Star-Forming Gas

- Gao & Solomon (2004), Wu+2005
 → HCN mapping of entire galaxies + Galactic individual molec clumps
- the SFR scales as the mass of dense molecular gas: $n_{H_2} > 3.10^4 \text{cm}^{-3}$
 → comparison of IR extinction maps of molecular clouds with their census of Young Stellar Objects
- the SFR scales as the mass of dense molecular gas: $n_{H_2} > 10^4 \text{cm}^{-3}$

- CFRgs of about constant mean volume density ($n_{H_2} = \text{few } n_{th}$)
- Conclusion identical as for the tidal field impact analysis (Parmentier & Kroupa 2011)

Dense star-forming gas vs diffuse quiescent molecular gas
- Slopes of the cloud and cluster mass functions
- Slope of the Kennicutt-Schmidt law
CFRgs - Molecular Clump Mapping: Do Not Mix!

Star-forming region: W43S

<table>
<thead>
<tr>
<th>Tracers</th>
<th>FWHM [pc]</th>
<th>log(n [cm⁻³])</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN1-0</td>
<td>1.8</td>
<td>3.46</td>
</tr>
<tr>
<td>CS2-1</td>
<td>1.4</td>
<td>3.68</td>
</tr>
<tr>
<td>HCN3-2</td>
<td>0.6</td>
<td>4.50</td>
</tr>
<tr>
<td>CS7-6</td>
<td>0.3</td>
<td>5.21</td>
</tr>
</tbody>
</table>

To identify a mass-radius diagram of molecular clumps as the mass-radius diagram of the star clusters they are forming is not as straightforward as sometimes quoted in the literature.

≠ tracers probe ≠ molecular clump regions, with higher densities corresponding to inner, smaller regions.
Star-forming region: W43S

<table>
<thead>
<tr>
<th>Tracers</th>
<th>FWHM [pc]</th>
<th>log(n [cm⁻³])</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCN1-0</td>
<td>1.8</td>
<td>3.46</td>
</tr>
<tr>
<td>CS2-1</td>
<td>1.4</td>
<td>3.68</td>
</tr>
<tr>
<td>HCN3-2</td>
<td>0.6</td>
<td>4.50</td>
</tr>
<tr>
<td>CS7-6</td>
<td>0.3</td>
<td>5.21</td>
</tr>
</tbody>
</table>

To identify a mass-radius diagram of molecular clumps as the mass-radius diagram of the star clusters they are forming is not as straightforward as sometimes quoted in the literature.

BEWARE!!

Molecular clump densities vary over smaller regions.
From the mass function of GMCs/clumps to that of gas-free star clusters ...

\[\frac{dN}{dm} \propto m^{-\alpha} \]

- \(\alpha = 1.7 \), molecular clumps and Giant Molecular Clouds
- \(\alpha = 2 \), young star clusters
- Steeper than \(\alpha = 2 \)

Mass-varying SFE: lower SFE at higher cloud/clump mass ??

But then mass-varying \(F_{\text{bound}} \) too ??

\(F_{\text{bound}} \)

Gas-free star clusters

Embedded -clusters
From the mass function of GMCs/clumps to that of gas-free star clusters ... with a volume density threshold for star formation

➢ Cluster-forming regions: constant mean volume density (tidal field impact analysis)

➢ GMCs and

➢ Molecular clumps with signs of SF activity: constant mean surface density
 • Larson 1981
 • Blitz+ 2006
 • Heyer+ 2009

GMCs in
- LMC
- MW

Fig8 in Blitz+06

Galactic C18O Molec. clumps with SF activity

Fig10b, Parmentier (2011)
From the Mass Function of Molecular Clumps to that of Embedded Star Clusters

- Constant mean surface density clumps
→ a clump of higher mass has a lower fraction of its mass above a given volume density threshold

\[\rho_{\text{low}} \propto \log(m) \]

\[\rho_{\text{high}} \propto \frac{1}{r} \]

\[m_{\text{clump}} \propto r_{\text{clump}}^{1/2} \]

\[r \propto m^{1/3} \]
From the Mass Function of Molecular Clumps to that of Embedded Star Clusters

Molecular clumps: 2-zone model

- Low-density outer envelope: $n_{\text{H}_2} < n_{\text{th}}$
- High-density cluster-forming region (CFRg): $n_{\text{H}_2} > n_{\text{th}}$

The local SFE must be measured over the CFRg, not over the whole molecular clump

$\rho_{\text{clump}}(r) \propto r^{-1.9}$

$\begin{align*}
\frac{m_{\text{CFRg}}}{m_{\text{clump}}} & \propto m_{\text{clump}}^{-0.3} \\
\end{align*}$

Mueller+02: density index ≈ 1.8
Massive Star Formation (MSF) Limit

Non-MSF clumps: \(m_{\text{max}} < 10M_\odot \)

MSF clumps: \(m_{\text{max}} > 10M_\odot \)

Fig2 and Eq1, Kauffmann & Pillai (2010)

\[m_{\text{clump}} = 870M_\odot \left(\frac{r_{\text{clump}}}{\text{pc}} \right)^{1.33} \]

Tool to define ALMA targets for MSF studies

Intercept and slope?
What do we need to form a 10M_{\odot} star?

Molecular clump: m_{clump}

- $m_{\text{CFRg}}(p, \rho_{th}, m_{\text{clump}}, r_{\text{clump}})$

- $n_{\text{H}_2} > n_{th}$

Star-forming gas: $m_{\text{CFRg}} > 150M_{\odot}$

- $\text{SFE} = 0.3$

Embedded-cluster: $m_{\text{ecl}} > 50M_{\odot}$

Most-massive star: $m_{*,\text{max}} > 10M_{\odot}$

Fig3, Weidner+2010

$\log(m_{*,\text{max}}) = \log(m_{\text{ecl}}) + 4$
Massive Star Formation (MSF) Limit

Volume density threshold for overall star formation:
\[n_{H_2} > n_{th} \]

\[m_\ast = 10M_\odot : \frac{m_{CFRg}}{SFE} = \frac{m_{ecl}}{150M_\odot} \]
\[< n_{CFRg} \geq few \times n_{th} \]

Non-MSF clumps:
\[m_{\ast,\text{max}} < 10M_\odot \]

MSF clumps:
\[m_{\ast,\text{max}} > 10M_\odot \]

\[m_{\text{clump}} = 870M_\odot \left(\frac{r_{\text{clump}}}{\text{pc}} \right)^{1.33} \]
Massive Star Formation Limit

Fig2, Kauffmann & Pillai (2010)

\[
m_{\text{clump}} = \left(m_{\text{CFRg}} \right)^{p/3} \left(\frac{4\pi \rho_{\text{th}}}{3-p} \right)^{(3-p)/3} r_{\text{clump}}^{3-p}
\]

Parmentier (2011), Eq.3

- Non-MSF clumps: \(m^{*,\max} < 10M_\odot \)
- MSF clumps: \(m^{*,\max} > 10M_\odot \)

Clump mass \([M_\odot]\) vs. Clump radius \([\text{pc}]\)

Clump mass \([M_\odot]\) vs. log10 (Clump mass \([M_\odot]\))

Clump mass \([M_\odot]\) vs. log10 (Clump radius \([\text{pc}]\))

\(m_{\text{CFRg}} = 10M_\odot \)

\(m_{\text{CFRg}} = 1E3M_\odot \)

\(n_{\text{th}} = 10^5 \text{cm}^{-3} \)
Massive Star Formation Limit

\[m_{\text{clump}} = 870M_0 \left(\frac{r_{\text{clump}}}{\text{pc}} \right)^{1.33} = \frac{m_{\text{CFRg}}^p}{3-p} \left(\frac{4\pi \rho_{\text{th}}}{3-p} \right)^{(3-p)/3} r_{\text{clump}}^{3-p} \]

Non-MSF clumps: \(m_{\text{*,max}} < 10M_0 \)

MSF clumps: \(m_{\text{*,max}} > 10M_0 \)

Fig 2, Kauffmann & Pillai (2010)

\[m_{\text{CFRg}} = 10^3 M_0 \]

\[m_{\text{CFRg}} = 10^5 M_0 \]

\[n_{\text{th}} = 10^5 \text{ cm}^{-3} \]
Massive Star Formation Limit

Matching the slopes:

\[m_{\text{clump}} = 870M_0 \left(\frac{r_{\text{clump}}}{\text{pc}} \right)^{1.33} = m_{\text{CFRg}}^{p/3} \left(\frac{4\pi \rho_{\text{th}}}{3 - p} \right)^{\frac{3 - p}{3}} r_{\text{clump}}^{3 - p} \]

MSF limit: \(p=1.7 \) (Parmentier+, subm)

GMC/SC MFs: \(p=1.9 \) (Parmentier 2011)

Dust Cont. mapping: \(p=1.8 \) (Mueller+ 2002)

Matching the intercepts:

\[m_{\text{clump}} = 870M_0 \left(\frac{r_{\text{clump}}}{\text{pc}} \right)^{1.33} = m_{\text{CFRg}}^{p/3} \left(\frac{4\pi \rho_{\text{th}}}{3 - p} \right)^{\frac{3 - p}{3}} r_{\text{clump}}^{3 - p} \]

- **Parmentier+, subm**, \(m_{\text{CFRg}} = 150M_0 \)
- **Lada, Lombardi & Alves (2010):** \(n_{\text{th,H2}} = 10^4 \text{ cm}^{-3} \)
Conclusions

Properties of young star cluster systems
→ sharp insights into the clustered mode of star formation
→ star formation conditions determine what mass fraction clusters lose as they age
→ information needed to reconstruct galaxy SFH
→ time-variations? (e.g. metallicity)

“Even a long journey starts with a one single step”
Oriental saying

An exciting era has just started:
HERSCHEL, ALMA, …