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Some basic ideasSome basic ideas

Parallel ComputingParallel Computing



Evolution according to 
Amdahl's law of the 
theoretical speedup of 
the execution of a 
program in function of 
the number of 
processors executing it, 
for different values of p. 
The speedup is limited 
by the serial part of the 
program. For example, 
if 95% of the program 
can be parallelized, the 
theoretical maximum 
speedup using parallel 
computing would be 20 
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law  (Gene Amdahl 1967)



Calculate Amdahl's Law:

Let X be the part of my program (in terms of computing time) which can be parallelised. 
The sequential computing time Tseq is normalized to unity (1), and can be expressed 
as:

Tseq = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast 
communication):

Tpar = X/p + (1-X)                         with processor number (core number)   p

Then the speed-up of the program S = Tseq / Tpar :

S = 1 / (1-X+X/p)        ;      Note: Tpar/Tseq = 1/S  (sometimes also plotted)

Note the limit if p is very large:  S = 1/(1-X). And if X ~ 1: S  ～ p 

With communication overhead:

Tpar = X/p + (1-X)  + Tcomm            →      S = 1 / (1-X+X/p+Tcomm)

If Tcomm independent of p we have for large p:  S = 1 / (1-X + Tcomm) = const.  



Nopt

Parallel code on cluster



Strong and Soft Scaling

  Strong Scaling: Fixed Problem size, increase p 
  Soft Scaling: Increase Problem size, increase p
  (constant amount of work per processing element)

Ansatz for Soft Scaling:
 Tseq = p = p (X + (1-X))
 Tpar = X  + p (1-X)
   S = Tseq/Tpar = p  / (X+p (1-X))
   If X~1: S = p ; Tpar = X = const.    
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ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs . 
440 cores
= 704.000 
GPU-Cores

Using 
Mole-8.5
of 
IPE/CAS 
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak
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Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU



Roofline Performance Model (LBL)

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. 
Arithmetic Intensity is the ratio of total floating-point operations to total 
data movement (bytes). 

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline


Roofline Performance Model (LBL)

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png
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Matrix Multiply and DebuggingMatrix Multiply and Debugging

Parallel ComputingParallel Computing
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Intuitive multiply
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 CUDA – GNU Debugger – CUDA-gdb

http://docs.nvidia.com/cuda/cuda-gdb/index.html
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Exercises (CUDA Lectures in afternoon)

1. hello, device-   first kernel call, hello world, GPU properties
2. add              -   vector addition using one thread in one block only
3. add-index    -   vector addition using blocks in parallel, 
                              one thread per block only.
4. add-parallel -   vector addition using all blocks and threads in parallel
5. dot               -  scalar product using shared memory of one block 
                              only for reduction
6. dot-full         -  scalar product using shared memory and 
                              atomic add across blocks
7. histo            -  histogram using fat threads and atomic add 
                              on shared and global memory, timing
8. dot-perfect  -  scalar product using fat threads, shared memory, 
                              final reduction on host.
9. matmul       -  matrix multiplication with tiled access shared memory

Wrapping Up 1
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Wrapping Up 2

Elements of CUDA C learnt:

threadId.x , blockId.x, blockDim.x, gridDim.x               Threads, Blocks
(threadId.y, blockId.y, blockdim.y, gridDim.y                 work with 2D grids)
kernel<<<n,m>>> (...)                                                  kernel calls
__device__   __global__                                              device code
__shared__                                                                   shared memory on GPU
cudaMalloc    / cudaFree                                               manage global memory of GPU
cudaMemcpy / cudaMemset                                         copy/set to or from memory
cudaGetDeviceProperties                                             get device properties in program
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy                                                         CUDA profiling
AtomicAdd                                                                     atomic functions
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Wrapping Up 3

What we have not yet learnt...

__constant__                                                        constant memory on GPU
cudaBindTexture                                                   using texture memory
fat threads for 2D and 3D stencils                        thread coalescence opt.
cudaStreamCreate, cudaStreamDestroy             working with CUDA streams
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