
88
77

Some basic ideasSome basic ideas

Parallel ComputingParallel Computing

Evolution according to
Amdahl's law of the
theoretical speedup of
the execution of a
program in function of
the number of
processors executing it,
for different values of p.
The speedup is limited
by the serial part of the
program. For example,
if 95% of the program
can be parallelized, the
theoretical maximum
speedup using parallel
computing would be 20
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law (Gene Amdahl 1967)

Calculate Amdahl's Law:

Let X be the part of my program (in terms of computing time) which can be parallelised.
The sequential computing time Tseq is normalized to unity (1), and can be expressed
as:

Tseq = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast
communication):

Tpar = X/p + (1-X) with processor number (core number) p

Then the speed-up of the program S = Tseq / Tpar :

S = 1 / (1-X+X/p) ; Note: Tpar/Tseq = 1/S (sometimes also plotted)

Note the limit if p is very large: S = 1/(1-X). And if X ~ 1: S ～ p

With communication overhead:

Tpar = X/p + (1-X) + Tcomm → S = 1 / (1-X+X/p+Tcomm)

If Tcomm independent of p we have for large p: S = 1 / (1-X + Tcomm) = const.

Nopt

Parallel code on cluster

Strong and Soft Scaling

 Strong Scaling: Fixed Problem size, increase p
 Soft Scaling: Increase Problem size, increase p
 (constant amount of work per processing element)

Ansatz for Soft Scaling:
 Tseq = p = p (X + (1-X))
 Tpar = X + p (1-X)
 S = Tseq/Tpar = p / (X+p (1-X))
 If X~1: S = p ; Tpar = X = const.

99
22

ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs .
440 cores
= 704.000
GPU-Cores

Using
Mole-8.5
of
IPE/CAS
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak

99
33

Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU

Roofline Performance Model (LBL)

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity.
Arithmetic Intensity is the ratio of total floating-point operations to total
data movement (bytes).

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Roofline Performance Model (LBL)

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

99
77

Matrix Multiply and DebuggingMatrix Multiply and Debugging

Parallel ComputingParallel Computing

99
88

99
99

Intuitive multiply

100

102

 CUDA – GNU Debugger – CUDA-gdb

http://docs.nvidia.com/cuda/cuda-gdb/index.html

103

104

Exercises (CUDA Lectures in afternoon)

1. hello, device- first kernel call, hello world, GPU properties
2. add - vector addition using one thread in one block only
3. add-index - vector addition using blocks in parallel,
 one thread per block only.
4. add-parallel - vector addition using all blocks and threads in parallel
5. dot - scalar product using shared memory of one block
 only for reduction
6. dot-full - scalar product using shared memory and
 atomic add across blocks
7. histo - histogram using fat threads and atomic add
 on shared and global memory, timing
8. dot-perfect - scalar product using fat threads, shared memory,
 final reduction on host.
9. matmul - matrix multiplication with tiled access shared memory

Wrapping Up 1

105

Wrapping Up 2

Elements of CUDA C learnt:

threadId.x , blockId.x, blockDim.x, gridDim.x Threads, Blocks
(threadId.y, blockId.y, blockdim.y, gridDim.y work with 2D grids)
kernel<<<n,m>>> (...) kernel calls
__device__ __global__ device code
__shared__ shared memory on GPU
cudaMalloc / cudaFree manage global memory of GPU
cudaMemcpy / cudaMemset copy/set to or from memory
cudaGetDeviceProperties get device properties in program
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy CUDA profiling
AtomicAdd atomic functions

106

Wrapping Up 3

What we have not yet learnt...

__constant__ constant memory on GPU
cudaBindTexture using texture memory
fat threads for 2D and 3D stencils thread coalescence opt.
cudaStreamCreate, cudaStreamDestroy working with CUDA streams

	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

