ARI Colloquíum - 06.02.2025

Cracking the Relation between Mass and 1P-Star Fraction of Globular Clusters

Geneviève Parmentier

DFG Postdoctoral Fellow

Astronomisches-Rechen Institut Zentrum für Astronomie Heidelberg Germany

Project initiated under SFB B5, PI: Anna Pasquali

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Observed in old globular clusters and in intermediate-age compact massive clusters
- Mostly light elements: He, CNONa (MgAI)
- ✤ First insights from spectroscopy …

Light-Element Abundance Variations

- Today powerfully completed by the data from the Chromosome Map of star clusters (Milone+2015)
 - Mapping tool of multiple stellar populations in star clusters
 - Photometry-based (exploits the high sensitivity of stellar UV-colours to CNO abundances)

Light-Element Abundance Variations

- Today powerfully completed by the data from the Chromosome Map of star clusters (Milone+2015)
 - Mapping tool of multiple stellar populations in star clusters
 - Photometry-based (exploits the high sensitivity of stellar UV-colours to CNO abundances)

Light-Element Abundance Variations

- Today powerfully completed by the data from the Chromosome Map of star clusters (Milone+2015)
 - Mapping tool of multiple stellar populations in star clusters
 - Photometry-based (exploits the high sensitivity of stellar UV-colours to CNO abundances)
- Two main populations:
 - 1P stars (pristine stars)
 - 2P stars (polluted stars)

Geneviève Parmentier -Zentrum für Astronomie Heidelberg

Data Points: Location and Desert, Shape of their Distribution

Explaining the Data with a Pure Mass (Leftward) Shift

A Sharpened Read of the Data

Geneviève Parmentier Zentrum für Astronomie Heidelberg

A Sharpened Read of the Data

A Sharpened Read of the Data

I. A stellar mass threshold for 2P-star formation For a cluster to start its self-pollution, it must reach a stellar mass threshold m_{th}

- I. A stellar mass threshold for 2P-star formation For a cluster to start its self-pollution, it must reach a stellar mass threshold m_{th}
- II. An instantaneous and complete cluster pollution Once started, the cluster pollution is instantaneously completed, thereby implying that all stars formed after reaching the threshold are 2P/polluted stars

- I. A stellar mass threshold for 2P-star formation For a cluster to start its self-pollution, it must reach a stellar mass threshold m_{th}
- II. An instantaneous and complete cluster pollution Once started, the cluster pollution is instantaneously completed, thereby implying that all stars formed after reaching the threshold are 2P/polluted stars
- III. Clusters evolve at constant F_{1P} 1P and 2P stars form spatially well-mixed; they are therefore lost equally likely

Step 3 – Secular Evolution $\rightarrow m_{prst}$

Step 3 – Secular Evolution $\rightarrow m_{prst}$

Step 3 – Secular Evolution – Two Extreme Behaviors

Step 3 – Secular Evolution – Two Extreme Behaviors

Step 3 – Secular Evolution Inner / Outer is Here a Pure Left / Right Effect

Step 3+ – On the High-Mass Side: Dynamical Friction

Star clusters of the Magellanic Clouds

> are younger and
> have evolved in a milder tidal field

than most Galactic globular clusters

We thus expect to find them among the large R_{eq} tracks

What about the Magellanic Clouds Clusters ?

An Observational Constraint ...

The fraction of 2P stars in the Galactic halo <u>field</u> is low: 1-3% Carretta+ 2010 - Martell+ 2011

That multiple-populations clusters are assumed to lose equally-likely their 1P and 2P stars may therefore be perceived as a problem.

An Observational Constraint ...

The fraction of 2P stars in the Galactic halo <u>field</u> is low: 1-3% Carretta+ 2010 - Martell+ 2011

That multiple-populations clusters are assumed to lose equally-likely their 1P and 2P stars may therefore be perceived as a problem.

<u>Yet, it is not</u>

<u>2P</u> stars are released by multiple-populations clusters only, and multiple-populations clusters are the <u>most massive clusters</u>, <u>hence the most resilient to evaporation</u>

each decade contribute

the same fraction

to the total initial cluster mass

smaller fraction of

their stars in the field

they cast in the field

1P stars only

The present-day distribution of Galactic globular clusters in the F_{1P}(m_{prst}) space is straightforwardly explained if:

- I. There is a cluster-mass threshold for 2P star formation
- II. Upon reaching this threshold, clusters form 2P stars exclusively
- III. Globular clusters retain a constant pristine-star fraction F_{1P} as they evaporate, i.e. their 1P and 2P stars are spatially well-mixed initially
 - This does not contradict the small fraction of 2P stars in the halo field as single-population, lower-mass, clusters are the first ones to dissolve
- The location of the Magellanic Clouds clusters with respect to their Galactic siblings follows naturally
- Hyp.II and Hyp.III are being relaxed in ongoing work

Supplementary Material

Supplementary Material

An Observational Constraint ...

The fraction of 2P stars in the Galactic halo <u>field</u> is low: 1-3% Carretta+ 2010 - Martell+ 2011

That multiple-populations clusters are assumed to lose equally-likely their 1P and 2P stars may therefore be perceived as a problem.

<u>Yet, it is not</u>

<u>2P</u> stars are released by multiple-populations clusters only, and multiple-populations clusters are the <u>most massive clusters</u>, <u>hence the most resilient to evaporation</u>

each decade contribute

the same fraction

to the total initial cluster mass

smaller fraction of

their stars in the field

they cast in the field

1P stars only

An Observational Constraint ... That is Met

Geneviève Parmentier Zentrum für Astronomie Heidelberg -

An Observational Constraint ... That is Met

Reading the Data Anew ... From Different Viewing Points

Reading the Data Anew ... From Different Viewing Points

Reading the Data Anew ... From Different Viewing Points

... but they allow additional and insightful readings of the data

Fig4abc, Parmentier 2024b

Non-Instantaneous Pollution of the Cluster

Non-Instantaneous Pollution of the Cluster

Evolution with $F_{bound}^{VR} = constant$ during Violent Relaxation

- F^{VR}_{bound} more robust to environmental variations (e.g. external tidal field; Shukirgaliyev, Parmentier et al. 2019) than thought in the past once the steeper density profile of clusters, as compared to their embedding gas, is taken into account (Parmentier & Pfalzner 2013)
- ★ Could violent relaxation be a nonevent for newly formed compact massive clusters? If SFE → 1 (Polak+2023), $F_{bound}^{VR} \rightarrow 1$

