Astronomisches Rechen-Institut, 18.10.2012

Connecting the Local Star Formation Law and the Growth of Embeded Clusters

Geneviève Parmentier

Olympia-Morata Fellow of Heidelberg University

Astronomisches-Rechen Institut Heidelberg Zentrum für Astronomie

Germany

Setting the Scene: Star Clusters (SC) as Powerful Tracers of Galaxy Evolution

Star Clusters (SC):

 Compact groups of coeval stars bound together by gravity
 Identified on a one-by-one basis against the background of their host galaxy

Multi-band imaging of SC systems

 (→ cluster magnitudes, colours)
 feasible out to Virgo Galaxy Cluster distances and beyond (≈ 60Mpc)
 combined to Simple Stellar Population models → estimates of cluster age, mass, metallicity

Comprehensive view of galaxy-:
chemical enrichment history,
interaction history,
star formation history
over the past Hubble-Time

Jordan+04 (ACS Virgo Galaxy Cluster Survey II, fig6)

Background-subtracted image

But SCs = encoded record of the SFH of their host galaxy

Observed Young Star Cluster Mass Functions

Macroscopic: galaxy-wide, or multi-kpc scale \rightarrow mass distribution of star clusters

Note: what happens after 100Myr remains disputed ...

Evolution of Young SC Mass Functions 1/2 - Tidal Field Impact: r_{hm}/r_t

Diapositive 4

g4 gparm; 21/04/2011

The m_{CFRg} - r_{CFRg} Diagram as a Diagnostic Tool

The m_{CFRg} - r_{CFRg} Diagram as a Diagnostic Tool

Young SC Mass Functions - Tidal Field Impact

The cluster crossing-time: your basic time-unit!

A star cluster does not care about how long it takes for the earth to revolve around the sun! The basic time-unit is the <u>cluster initial crossing-time</u>, not the year or Myr

-1/2 $au_{cross} \propto
ho_{CFRg}$

Evolution of Young SC Mass Functions

Young SC Mass Functions

Young SC Mass Functions

A Volume Density Threshold for the SF Gas ?

• ρ_{CFRg} = constant :

provides the most robust solution to the time-invariant shape of the cluster mass function

• Interesting since:

SFR and dense molecular gas mapping in:
Entire galaxies Gao & Solomon 2004
Galactic molecular clumps Wu+ 2005

SFR scales as the mass of dense molecular gas: n_{H2} > 10⁴cm⁻³

CFRgs of about <u>constant mean</u> volume density (n_{H2} = few n_{th})

A Volume Density Threshold for the SF Gas ...

• ρ_{CFRg} = constant :

provides the most robust solution to the time-invariant shape of the cluster mass function

• Interesting since:

@ Galactic molecular clumps Wu+ 2005

SFR scales as the mass of dense molecular gas: n_{H2} > 10⁴cm⁻³

CFRgs of about <u>constant mean</u> volume density (n_{H2} = few n_{th})

Same scaling (constant mean volume density) as from:

- the tidal field impact analysis (Parmentier & Kroupa 2011)
- the crossing-time analysis (Parmentier & Baumgardt 2012)

... cannot be the only explanation

But what for the star-forming regions of the Solar Neighbourhood? Spitzer-telescope observations: star formation can proceed in <u>low-density</u> environments too ... (Allen et al. 2007, Evans et al. 2009, ...)

Star Formation Efficiency per Free-Fall Time: ε_{ff}

Star Formation Efficiency $\epsilon_{\rm ff}$ per Free-Fall Time $\tau_{\rm ff}$

$$\tau_{ff} = \sqrt{\frac{3\pi}{32 \, G \, \rho_g}}$$

Krumholz & McKee 2005

For any given time-span after the onset of star formation: molecular-gas regions of higher density achieve higher SFEs

 Global scale - galaxies
 Spirals vs. ULIRGs
 Central regions vs. outskirts of spirals

Local scale – individual molecular clumps

- > volume density gradients $\rightarrow \rightarrow$
- > SFE_{centre} >> SFE_{outskirts}
 - Consequences and

observational signatures ?

Immediate consequences of the ε_{ff} concept

 Density profiles: ρ∗(r) steeper than ρ_g(r)

 ✓

Immediate consequences of the ε_{ff} concept

ρ_∗(r) steeper than ρ_g(r)

Local star formation law

Immediate consequences of the ε_{ff} concept

Model

Molecular clump and YSOs - Hypotheses

- > Molecular clump:
 - Spherical symmetry power-law density profile
 - Static clump No global collapse
 - Local collapse on a time-scale $\tau_{\rm ff}(t,r)$
- > YSOs: no migration after formation
- Model For a shell of radius r, gas mass dm_g(t,r), at each time-step Δt, its stellar mass increases by:

$$+ \varepsilon_{ff} \frac{\Delta t}{\tau_{ff}(t,r)} dm_g(t,r)$$

Model

Molecular clump and YSOs - Hypotheses

- > Molecular clump:
 - Spherical symmetry power-law density profile
 - Static clump No global collapse
 - Local collapse on a time-scale $au_{\rm ff}(t,r)$
- > YSOs: no migration after formation
- Model For a shell of radius r, gas mass dm_g(t,r), at each time-step Δt, its stellar mass increases by:

$$+\mathcal{E}_{ff} \frac{\Delta t}{\tau_{ff}(t,r)} dm_g(t,r)$$

Model consequence: SF slows down

> $\tau_{\rm ff}(t,r)$ \uparrow > $dm_a(t,r) \downarrow$

Star and Gas Volume Density Profiles [Conseq.1]

Fig1, Gutermuth+ (2011)

Density profiles:

- ρ_{*}(t,r) steeper
 than ρ_g(t,r)
- > ρ_g(t,r) shallower than ρ_g(t=0,r)

Local Star Formation Law [Conseq. 2]

Cluster Survival Made Easier [Conseq. 3]

Cluster Survival Made Easier [Conseq. 3]

Fig2, Pfalzner (2011)

Fig2, Pfalzner (2011)

Reconciling the two scenarios with an obs. bias

Allen et al. (2007): "for the many clusters surrounded by large, low surface density halos of stars, the measured radius and density of these clusters depends on the <u>threshold surface density</u> used to distinguish the cluster stars from those in the halos"

Reconciling the two scenarios with an obs. bias

Conclusions: From the Cluster Mass Function to the Local Star Formation Law

Macroscopic: galaxy-wide, or multi-kpc scale \rightarrow mass distribution of star clusters

Microscopic: star-forming region few-pc scale \rightarrow local star formation law

