

# Cracking the Relation Between Mass and 1P-Star Fraction of Globular Clusters

Geneviève Parmentier Zentrum für Astronomie Heidelberg

Germany











# The Multi-Pops Phenomenon ... A Massive-Cluster Story

#### 74 Galactic GCs



 $F_{1P}^{obs}$  from Milone's collaboration







# The Multi-Pops Phenomenon ... A Massive-Cluster Story







# **A Sharpened Read of the Data**





I. A fixed stellar mass threshold for 2P-star formation: m<sub>th</sub>







I. A fixed stellar mass threshold for 2P-star formation: m<sub>th</sub>

II. An instantaneous and complete cluster pollution Once 2P-star formation starts 1P-star formation stops







- I. A fixed stellar mass threshold for 2P-star formation: m<sub>th</sub>
- II. An instantaneous and complete cluster pollution Once 2P-star formation starts 1P-star formation stops

$$\longrightarrow m_{1P} = m_{th}$$







# Hypotheses I + II $\Rightarrow$ F<sub>1P</sub>(mass) for newly formed clusters

- I. A fixed stellar mass threshold for 2P-star formation: m<sub>th</sub>
- II. An instantaneous and complete cluster pollution Once 2P-star formation starts 1P-star formation stops

$$m_{1P} = m_{th}$$

$$F_{1P} = \frac{m_{th}}{m_{ecl}}$$

# with m<sub>ecl</sub> the stellar mass of newly formed clusters



9



# Hypotheses I + II $\Rightarrow$ F<sub>1P</sub>(mass) for newly formed clusters





# Hypotheses I + II $\Rightarrow$ F<sub>1P</sub>(mass) for newly formed clusters





I. A fixed stellar mass threshold for 2P-star formation: m<sub>th</sub>

II. An instantaneous and complete cluster pollution Once 2P-star formation starts 1P-star formation stops

III. Clusters evolve at constant F<sub>1P</sub> 1P and 2P stars form spatially well-mixed; they are lost equally likely Leitinger+2023, Fig15









# **Violent Relaxation - Stellar Evolutionary Mass Losses**





# **Violent Relaxation - Stellar Evolutionary Mass Losses**





# With Secular Evolution up to the Age of 12Gyr











































#### **Secular Evolution: Two Extreme Behaviours**





#### **Secular Evolution: Two Extreme Behaviours**





#### **Secular Evolution: Two Extreme Behaviours**





#### Geneviève Parmentier - -Zentrum für Astronomie Heidelberg







#### **Dynamical Friction**





# **Magellanic Cloud Clusters**

 ❖ Younger
❖ Milder tidal field
than most Galactic GCs
⇒ expected among the large R<sub>eq</sub> tracks







# **Magellanic Cloud Clusters**





# What About Bringing the Data Points Back in Time ?





# What About Bringing the Data Points Back in Time ?





The observed (mass, F<sub>1P</sub>) distribution of Galactic globular clusters

 $F_{1P} = \frac{m_{th}}{m_{ecl}}$ could stem from  $\rightarrow$  instantaneous cluster pollution Parmentier 2024a ► Generalisation as  $F_{1P} = \left(\frac{m'_{th}}{m_{ecl}}\right)^{\psi < 1} \xrightarrow{\text{non-instantaneous cluster poll.}} (drop Hyp.II) \text{Parmentier 2024b}$ Parmentier 2025 eas 2025

Geneviève Parmentier - Zentrum für Astronomie Heidelberg



# What About Bringing the Data Points Back in Time ?





# **Supplementary Material**

#### **Supplementary Material**







# **Evolution with** $F_{bound}^{VR} = constant$ during Violent Relaxation

- F<sup>VR</sup><sub>bound</sub> more robust to environmental variations than thought in the past (e.g. external tidal field)
- ★ Could violent relaxation be a non-event for newly formed compact massive clusters? If SFE → 1 (Polak+2023),  $F_{bound}^{VR} \rightarrow 1$













# Secular Evolution up to the Age of 12Gyr







# **Inner versus Outer/Remote Clusters**





An Observational Constraint ...

The fraction of 2P stars in the Galactic halo <u>field</u> is low: 3%-10% Carretta+ 2010 - Martell+ 2011 – Horta+21

That multiple-populations clusters are assumed to lose equally-likely their 1P and 2P stars may therefore be perceived as a problem.







The fraction of 2P stars in the Galactic halo <u>field</u> is low: 3%-10% Carretta+ 2010 - Martell+ 2011 – Horta+21

That multiple-populations clusters are assumed to lose equally-likely their 1P and 2P stars may therefore be perceived as a problem.

#### <u>Yet, it is not</u>

<u>2P</u> stars escape from multiple-populations clusters only, and multiple-populations clusters are the <u>most massive</u> <u>clusters, hence the most resilient to evaporation</u>



