STScI - 14.10.2013

Local-Density-Driven Clustered Star Formation: Model and Implications

Geneviève Parmentier

Olympia-Morata Fellow of Heidelberg University

Group of Eva K. Grebel Astronomisches-Rechen Institut Zentrum für Astronomie Heidelberg

Germany

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Star Clusters as Galaxy Evolution Tracers

Star Clusters: Why do I care?

Identified on a one-by-one basis against the background of their host galaxy

> Cluster spectrophotometry \rightarrow cluster age, cluster mass and cluster metallicity (estimates)

- Comprehensive view of galaxy-evolution over the past Hubble-Time:
- > Chemical evolution (cluster age vs. cluster metallicity)
- > Interaction/merging history (cluster age distribution)

To recover the star formation history of galaxies from their star clusters

- > Is the 'Holy Grail' of this quest
- > But star clusters dissolve with time (= give off their stars to the field)

Cluster age distribution of a galaxy is an <u>encoded</u> record of its star formation history

Gas-Density Dependent Star Formation Efficiency

Dissolution rate of star clusters
> Is heavily initial-conditions-driven
> Depends on the efficiency with which cluster progenitors convert their gas into stars
> The lower the efficiency, the greater the likelihood of dispersing the cluster

the likelihood of dispersing the cluster stars into the field when the residual star-forming gas is expelled

What does the Star Formation Efficiency of star-cluster progenitors depend on?

> Recent observations of starforming molecular clouds in the Solar Neighbourhood (Gutermuth et al. 2011) suggest a gas-densitydependent efficiency \sum_{ga}

Star Formation Efficiency per Free-Fall Time (ϵ_{ff})

Star Formation Efficiency $\epsilon_{\rm ff}$ per Free-Fall Time $\tau_{\rm ff}$

$$\tau_{ff} = \sqrt{\frac{3\pi}{32 \, G \, \rho_{gas}}}$$

Krumholz & McKee 2005

For any given time-span after the onset of star formation: molecular-gas regions of higher density achieve higher SFEs

Consequences on the scale of individual cluster-parent clumps?

> molecular clumps have volume density gradients

SFE_{centre} >> SFE_{outskirts}
is expected

Denser
Faster
Higher SFE

Star and Gas Volume Density Profiles

Movie: Gas Depletion and SFE Increase

Time t = 1.0Myr

Time t = 1.0Myr

Measured mean SFE depends on:

- Where (which spatial scale)?
- When (time-span since SF onset)?

Impact on cluster survivability after gas expulsion (low mean/global SFE does not necessarily imply cluster disruption -- see Adams 2001)

Denser Means Faster: Local & Global

Denser means faster

➤ True on the local scale → evolution of clump radial profiles (previous slide)

➤ True on the global scale too → evolution of the clump as a whole (this slide)

→ Conseq for cluster stellar age spreads

Local Star Formation Law

Local Star Formation Law

3D vs. 2D Perspectives – Measured ϵ_{2D}

OBSERVER

ε_{2D}

<u>Observed</u> (2D)
 local efficiencies
 <u>Actual</u> (3D) local
 efficiencies

 $\epsilon_{2D} < \epsilon_{3D}$

Denser Is Faster – Cluster Stellar Age Spreads

Denser is Faster – SFR Half-Life Time, t_{1/2}

Clump SF Histories - Binning

Same models; different result presentation

Assuming a SF duration of 2Myr, distribution of the stellar mass formed at t=2Myr as a function of time (bin size = 0.1Myr):

Binning alone conceals the short SFR half-life time of high-density clumps; e.g.

Clump A :

 $(t_{1/2} = 0.05Myr) < (Bin width = 0.1Myr)$

In case of high-density/fastevolving clumps, only an upper limit (>≈0.1Myr, the bin size) to the half-life time is recovered

Parmentier, Pfalzner & Grebel (subm)

From Clump SFHs to Stellar Age Distributions

0.5

0.4

Clump A

 $<\rho_0> = 1E5M_0.pc^{-3}$

 $t_{obs} = 5Myr$

 $t_{end} = 2My$

 $\epsilon_{\rm ff} = 0.10$

> The SFR half-life time, $t_{1/2}$, is one driver of the FWHM of linear stellar age distributions in clusters

Measured Cluster Stellar Age Distributions

Impact of the uncertainty affecting individual star ages: measured FWHM larger than SFR half-life time , t_{1/2} (in addition to binning effect)

Denser Is Faster: Model outcomes consistent with stellar age spreads in Wd-1 and NGC3603 narrower than that of the ONC (Kudryavtseva+2012, Reggiani+2011)

> Stellar age distribution often quantified by its width. Other interesting parameters:

- skewness
- kurtosis (Jeffries+2011)

Logarithmic stellar age distributions coming soon

> Observed accelerated SF on the old side of the age distribution could be the imprint of age errors

- Accelerated SF 'a la' Palla & Stahler (2000)
- No intrinsic property of SFH
- Imprint of star age errors!!
- See review by Preibisch (2012)

Conclusions

Slides: <u>wwwstaff.ari.uni-heidelberg.de/mitarbeiter/gparm/talks.html</u>

Movies: wwwstaff.ari.uni-heidelberg.de/mitarbeiter/gparm/movies.html

