The Early Survival of (Globular) Star Clusters: Easier Than We Thought!

Geneviève Parmentier

Astronomisches-Rechen Institut Zentrum für Astronomie Heidelberg With: B. Shukirgaliyev,

- P. Berczik & A. Just
- S. Pfalzner

Germany

Post-Gas-Expulsion Cluster Evolution

SC Dynamical Response to the Expulsion of its Residual Star-Forming Gas \rightarrow star-loss and expansion

- Time sequence of N-body simulations by Geyer & Burkert (2001):
- The SC does not necessarily survive
- The dynamical response of a star cluster to residual star-forming gas expulsion depends on many parameters:
 - Global star formation efficiency (Hills 1980)
 - Gas expulsion time-scale, in crossing-time units (Lada et al. 1984)
 - Embedded cluster subvirial or not (Goodwin 2009)
 - External tidal field (cluster galaxy volume density contrast) (Baumgardt & Kroupa 2007, Renaud et al 2008)
 - Additional external perturbations (e.g. spiral arms, GMCs) (Gieles et al. 20

Post-Gas-Expulsion Cluster Evolution

SC Dynamical Response to the Expulsion of its Residual Star-Forming Gas \rightarrow star-loss and expansion

- Time sequence of N-body simulations by Geyer & Burkert (2001):
- The SC does not necessarily survive
- The dynamical response of a star cluster to residual depends on many parameters:
 - Global star formation efficiency (Hills 1980)
 - Gas expulsion time-scale, in crossing-time unit
 - Embedded cluster subvirial or not (Goodwin 2009)
 - External tidal field (cluster galaxy volume density contrast) (Baumgardt & Kroupa 2007, Renaud et al 2008)
 - Additional external perturbations (e.g. spiral arms) (Gieles et al. 2006)

How are the gas and stars of a nascent cluster distributed with respect to each other at gas expulsion?

Post-Gas-Expulsion Cluster Evolution

Knowledge of the global star formation efficiency is not enough

How are the gas and stars of a nascent cluster distributed with respect to each other at gas expulsion?

- Clump of molecular gas
 - A. Is the gas converted into stars in a uniform manner?
 - Assumption on which the model presented in the previous slide builds
 - B. Or: is star formation more efficient in the central regions of the protocluster?
 - Helps improve star cluster survival

Geneviève Parmentier

Parmentier & Pfalzner 2013, Fig10

Scenario A – The Killer

Fraction of stars staying in a

Scenario B – The Rescuer

Cluster Formation: Insights from the Galactic Disk

- Early survival likelihood of star clusters depends heavily on initial conditions
- How can we distinguish between Scenario A and Scenario B?

16^h 40

One possibility is to look at nearby molecular clouds in the disk of our Galaxy, where young stars can be counted

30^r

Right Ascension

Gas-Density Dependent SFE: Observations

MonR2 Fig. 1, Gutermuth+ (2011) MonR2 cloud Σ_{YSO} $\Sigma_{YSO} \propto \Sigma_{gas}^2$ Oph 1000.0 (M_© pc⁻²) 100.0 06^h 14^m 10^m 06^m Right Ascension 10.0 > Observations of Σ_{YSO} molecular clouds in Solar 1.0 Σ_{YSO} **Neighbourhood: local star** $\Sigma_{gas} \propto \Sigma_{gas}$ formation efficiency does 0.1 depend on gas density 10 $\propto \mathcal{E}_{2D}$ (see also Lombardi+2013, Σ_{gas} Lada+ 2013)

100

(M_☉ pc

Star Formation Efficiency per Free-Fall Time (ϵ_{ff})

 \mathcal{T}

Star Formation Efficiency $\epsilon_{\rm ff}$ per Free-Fall Time $\tau_{\rm ff}$

$$_{ff} = \sqrt{\frac{3\pi}{32 \, G \, \rho_{gas}}}$$

Zentrum für Astronomie Heidelberg

Krumholz & McKee 2005

For any given time-span after the onset of star formation: molecular-gas regions of higher density achieve higher SFEs

Consequences on the scale of individual cluster-parent clumps?

> molecular clumps have volume density gradients

SFE_{centre} >> SFE_{outskirts}
is expected

Geneviève Parmentier

-

Star Formation Efficiency per Free-Fall Time (ε_{ff}) $\epsilon_{ff} = 0.05$ SFE = 0.05 $\begin{aligned} \tau_{ff,init} &= 0.5 Myr \\ \rho &\cong 300 M_{\Theta} \cdot pc^{-3} \end{aligned}$ **OMyr** 0.5Myr 1Myr **1.5Myr** $\varepsilon_{ff} = 0.05$ SFE >> 0.05 $\tau_{ff,init} = 0.1 Myr$ $\rho \approx 10^4 M_{\Theta} \cdot pc^{-3}$ **OMyr 0.5Myr** 1Myr **1.5Myr**

For any given physical time-span after the onset of star formation: molecular-gas regions of higher density achieve higher SFEs

> A star cluster does not care about how long the Earth takes to revolve around the Sun

Observations vs. Models

Star Formation Relation and SFE Radial Variations

Figs 3 and 10, Parmentier & Pfalzner (2013)

Local Star Formation Relation:

Superlinear / Quadratic

Local star formation efficiency : $\epsilon_{3D}(\text{inner}) > \epsilon_{3D}(\text{outer})$

Implementing Rescuing/Winning Scenario

Starting point: molecular clump

 $\rho_0(r) \to \rho_{ecl}(t_{SF}, r) \text{ and } \rho_{gas}(t_{SF}, r)$ $\neq t_{SF} \to \neq SFE \to \neq cluster \text{ masses} \to \neq r_t$ $\to \neq density \text{ profiles} \to \neq r_h$

Not straightforward to compare modeling outputs with earlier works

> To make life easier, starting point: embedded cluster with a given mass and given density profile

 $\rho_{ecl}(r)$ with fixed

stellar mass / density profile

Given SFE $\rightarrow \rho_0(t_{SF}, r)$ and $\rho_{gas}(t_{SF}, r)$

Implementing Rescuing/Winning Scenario

Implementing Rescuing/Winning Scenario

N-body Set-up for Rescuing/Winning Scenario

Results for Rescuing /Winning Scenario

18

Mass-Dependent vs Mass-Independent Dissolution

Conclusions

1.0 0.8 0.6 0.4 0.2 0.0 0.500 1000 1500 2000 2500 3000 t [Myr]

N=200	N=5000
N=500	N=10000
N=1000	N=20000
N=2000	N=50000

The survivability of clusters after gas expulsion is higher than previously expected, even in case of instantaneous gas expulsion

Shukirgaliyev, Parmentier, Berczik & Just, A&A, in press [http://xxx.lanl.gov/abs/1706.03228]

Mass-dependent and massindependent cluster dissolution co-exist during the first Gyr of evolution

Keep in mind: star clusters expand after gas expulsion

Ernst, Berczik, Just & Noel 2015