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hubart�ari.uni-heidelberg.deAbstra
t. This study extends earlier results on 
ir
umbinary orbits of massless bodies atresonan
e to examples of motion of a massive body on the outer orbit. The 1/5 resonan
eof the orbital periods of the binary and of the outer body is 
onsidered. Again the librationof a spe
ial angular argument 
ontinues without 
hange during the long period of numeri
alintegration and prevents 
lose approa
hes to a 
omponent of the binary. The ratio of the massesof these 
omponents is equal to 1:1 or 5:1. Spe
ial orbits show a periodi
 evolution in rotating
oordinates.1 Introdu
tionThis study extends S
hubart's numeri
al studies on the motion of a massless 
ir
umbinary bodyat the 1/5 resonan
e. A report on these earlier studies is available at http://wwwsta�.ari.uni-heidelberg.de/mitarbeiter/s
hubart. There the �le P-Type Planets 2 refers to the 1/5 resonan
e.A paper by S
hubart (2017) refers to the same subje
t. Here I report on analogous examplesof motion at this resonan
e with a massive body on the outer orbit. All the examples showlibration of a 
riti
al angular argument. Su
h pro
esses have appeared in studies on the earlyevolution of 
ir
umbinary planets by Nelson (2003) and by Kley and Haghighipour (2014) butmany other studies mentioned by Dvorak (2008) and Haghighipour (2010) have started witha 
ir
ular orbit of the outer body. This does not lead to the type of libration 
onsidered inthis study. S
hubart (2017) has mentioned orbits with an earth-sized 
ir
umbinary planet andwith libration at the 1/5 resonan
e. In the present study the mass of the 
ir
umbinary body isabout equal to 0.2 or 0.3 solar mass. I have varied the starting values of examples of the earlierstudies to �nd suitable 
ases of libration and to explore the range in these starting values thatleads to the same type of evolution. The libration prevents too 
lose approa
hes of the outerbody to one of the other bodies.The model of the for
es is given by the planar general three-body problem. All the bodiesrevolve in the same dire
tion. The ratio of the orbital periods of the binary and of the outermass is 
lose to 1:5. The ratio of the masses of the inner pair, m1 and m2, equals 1:1 or 5:1so that mr = m2/m1 is equal to 1 or 0.2 . m1+m2 is very 
lose to two times solar mass. m3is the mass of the outer body. Two tables present the starting values of the studied orbitsand show 
hara
teristi
 results. The orbits listed in these tables evolve in an approximatelyquasi-periodi
 way during the extended interval of the numeri
al 
omputations. A third tableshows some orbits that approximate periodi
 orbits of the general three-body problem.1



2 Designations and methodsI refer to the 
omponents of the binary by their masses, m1 and m2, and to the outer bodyby m3. The simultaneous numeri
al integration by use of the N-body program by S
hubartand Stump� (1966) pro
eeds in bary
entri
 re
tangular 
oordinates and 
overs about 5000revolutions of the binary system. I use the value of the solar mass plus mass sum of the fourinner planets re
ommended for this program to de�ne the unit of mass, mS. I put the sum m1 +
m2 equal to 2 mS . The result of the integration 
onsists in bary
entri
 re
tangular 
oordinatesand velo
ities but I use di�erent systems in the transformation from or to the os
ulating elementsthat appear in this paper. I derive the elements of m2 from relative 
oordinates with respe
tto m1 that here represents the origin, and I use the sum m1+m2 in the transformation. Theelements of m3 depend on relative 
oordinates with respe
t to the bary
enter of only the twobodies m1 and m2 but the sum of all the bodies enters in the transformation. I apply the inversetransformations to the respe
tive starting values of the os
ulating elements. All the results ofinterest are stored at equally spa
ed intervals.The designations of the elements of m3 are: a = semi-major axis, e = e

entri
ity, ̟ = longitudeof peri
enter, l = mean longitude. A su�x 2 refers an element to m2. In the present paper theseelements show the relative motion of m2 with respe
t to m1. I use the starting values a2 = 1au, l2 = ̟2 = 180◦ and 
onsider several values of e2. TP is the period of revolution or librationof ∆̟ = ̟ - ̟2. Sin
e both e and e2 are greater than zero, TP or 1/2 TP are the typi
al longperiods that appear in the results. Another long period, TL, is smaller than TP . The period
TL rules the pro
ess of libration of the 
riti
al element, θ. I 
all TL the period of libration.Here θ is de�ned by θ = l2 - 5l + 3̟ + ̟2. θ is redu
ed to the interval -180◦<θ<180◦. I usedigital �ltering (S
hubart and Bien 1984) to remove the e�e
ts of short periods that are aboutequal to the orbital period of m3 or smaller. This allows the study of e�e
ts by TL and TP inplots of θ or ̟ versus time. Then the unit of time equals 104 days. I use this unit in the tablesas well. If ne
essary the e�e
ts by TL and TP are separated by a spe
ial �lter.In Se
tion 3 I present orbits that show a permanent libration of θ about 0◦ a

ording to TL.The amplitude of this pro
ess 
an be extremely small in spe
ial 
ases. Due to the permanentlibration m3 avoids very 
lose approa
hes to the other bodies: An espe
ially small distan
e to
m2 
orresponds to l = l2 = ̟ with ̟2 = ̟ + 180◦. In this 
ase all the bodies are situated on astraight line and the 
omponents of the binary are at maximum distan
e from their bary
enter,but then θ = 180◦ so that the orbits avoid this situation. An analogous 
ase with respe
t to
m1 o

urs, if only l and ̟ are augmented by 180◦ but this does not 
hange θ. The avoidan
eof 
lose approa
hes with strong mutual perturbations favors the approximately quasi-periodi
evolution of the orbits.3 Results about two 
hoi
es of the ratio m2/m1The main result of the transition from m3=0 to m3>0 
onsists in the un
hanged qualitativlong-period evolution of suitable orbits. Although the orbit of the inner binary is perturbedit joins in this evolution. The frequen
ies of TP , TL, and of the mean period of revolution of
l-l2 together with linear 
ombinations of these frequen
ies rule the appoximately quasi-periodi
evolution. Now it is essential that the de�nition of TP depends on both ̟ and ̟2 and itis important that the starting values of e and e2 are not too small. Otherwise the range ofvariation of an e

entri
ity 
an in
lude very small values and then ̟ or ̟2 show rapid 
hangesduring a short interval of time. That does not allow a permanent libration of θ.2



Table 1: Chara
teristi
 values of orbits that refer to mr = 1No. e2 e a Amax A TL TP D1 0.10 0.15 3.13 37◦ 4◦ 1.2 17 2.202 0.10 0.15 3.09 86 40 0.9 14 2.123 0.10 0.15 3.11 55 20 1.0 15 2.164 0.10 0.15 3.1274 33 0 - 16 2.205 0.10 0.15 3.146 114 36 1.7 18 2.226 0.10 0.13 3.13 65 9 1.7 7.4 2.277 0.10 0.17 3.13 38 2 1.0 6.7 2.158 0.12 0.15 3.13 58 21 0.9 6.1 2.199 0.14 0.15 3.13 72 36 0.73 4.0 2.1710 0.15 0.15 3.135 74 39 0.68 3.5 2.1711 0.15 0.15 3.185 36 1 0.98 3.2 2.2812 0.15 0.18 3.185 27 4 0.66 4.5 2.1813 0.15 0.20 3.185 23 1 0.53 8.0 2.1214 0.07 0.15 3.095 79 14 1.14 2.7 2.16Notes to Table 1. The table lists the number of an orbit; the starting value of e2; the startingvalues of the elements e and a of m3; the maximum amplitude, Amax, of the 
riti
al argument
θ; the amplitude, A, of the e�e
ts due to the period of libration and the length of this period,
TL; the period of revolution of ∆̟, TP , a value in itali
s indi
ates libration of ∆̟; and atthe end of a line the minimum distan
e between m3 and m2 or m1, D. a and D are given inau. The unit of time is equal to 104 days, or to about 27.4 yr. The listed results refer to aninterval of integration of 3500 yr.The starting values of the angular elements of the orbits presented in this se
tion 
orrespondto the earlier studies of the ellipti
 restri
ted problem: l = ̟ = l2 = ̟2 = 180◦. Then θ startsat 0◦. It is possible to use the former starting values of e2, e, and a without 
hange to �ndlibrating orbits for small values of m3 but for the large values 
onsidered here a new �t of thestarting values of e and a is ne
essary for ea
h 
hoi
e of e2. At �rst I start with e2 = 0.1 to�nd a librating orbit. Then I vary the starting values to explore the range in these values thatleads to suitable librating orbits. A variation of a leads to 
hanges of the amplitude of librationof θ that is limited. Other variations 
an lead to orbits with a ratio TP/TL that is 
lose tothe ratio of small integers. A 
haoti
 evolution is possible in the vi
inity of su
h a se
ondaryresonan
e. Therefore I do not go beyond su
h 
ases with my variations.Table 1 refers to mr = 1 with m3 = 0.3 mS . The table shows the starting values of e2, e,and a and the following 
hara
teristi
 results: Amax, the maximum amplitude shown by theun�ltered os
illations of θ; A, the amplitude due to the period of libration that is visible inthe �ltered variations of these os
illations; the length of the periods TL and TP ; and D, theminimum of the distan
e between m3 and one of the other bodies. Orbits No. 1 - 5 showlibration of ∆̟ about 0◦ and the values of TP refer to this pro
ess. ∆̟ revolves in the re-maining 
ases but due to the ratio mr = 1 one half of TP is the dominant period that appearsin the results. Orbits 1 - 5 demonstrate the e�e
t in the values of Amax and A by the variationof the starting value of a. The following orbits indi
ate the range of possible variations in
ase of the e

entri
ities. Table 2 refers to mr = 0.2 with m3 = 0.2 mS and presents the anal-ogous results. Evidently the last orbits of the tables are in the vi
inity of se
ondary resonan
es.3



Table 2: Chara
teristi
 values of orbits that refer to mr = 0.2No. e2 e a Amax A TL TP D1 0.10 0.15 3.03 32◦ 2◦ 1.3 20 1.832 0.10 0.15 3.01 53 24 1.1 15 1.793 0.10 0.15 3.04 50 18 1.4 29 1.834 0.10 0.15 3.05 64 41 1.8 19 1.845 0.10 0.15 3.06 116 75 2.4 11 1.856 0.10 0.10 3.03 61 11 2.2 8 1.947 0.10 0.13 3.03 38 3 1.5 11 1.888 0.12 0.15 3.03 49 17 0.99 7.0 1.829 0.14 0.15 3.03 69 33 0.85 5.3 1.8110 0.15 0.15 3.04 68 31 0.84 4.7 1.8211 0.15 0.15 3.07035 36 0 - 4.6 1.9012 0.15 0.18 3.07 34 2 0.73 5.0 1.8113 0.15 0.20 3.065 34 3 0.61 5.7 1.7414 0.15 0.12 3.06 63 15 1.33 4.5 1.9315 0.08 0.15 3.015 36 1 1.53 4.6 1.80Notes to Table 2. The way of presentation of Table 2 
orresponds to Table 1. Now the resultsdepend on the smaller value m3 = 0.2 mS .4 Periodi
 orbitsIf ∆̟ librates or if it 
ir
ulates with a very large period TP it 
an be possible to �nd an orbitwith vanishing �ltered amplitudes of libration of both θ and ∆̟ by a suitable variation of thestarting values of a and e. This happens in 
ase of most of the examples presented in Table 3.Then two of the basi
 periods do not show e�e
ts in the results. If the evolution of the orbitof m3 is demonstrated in suitable rotating 
oordinates only e�e
ts of short period appear. Thebasi
 short period is given by the revolution of l - l2. To demonstrate the 
onne
tion betweenanother argument and the observed basi
 periods I write the formula given for θ in a di�erentway: θ = -(l - l2) -4(l - ̟) - ∆̟. This indi
ates that the variation of l - ̟ only depends onshort-period e�e
ts. Apparently all these e�e
ts are ruled by the period of revolution of l - l2.Other arguments are equal to linear 
ombinations of the ones that appear in the formula. Ifa system of rotating re
tangular 
oordinates is used that is independent of the 
hoi
e of theorigin of 
ounting the longitudes and if the 
oordinates of m3 are plotted, a 
urve that evolvesin the way of a periodi
 solution is expe
ted. I have su

eeded in plotting these 
urves. Forthis the use of bary
entri
 re
tangular 
oordinates is suitable sin
e the orbit of m2 en
ir
les thebary
enter in 
ase of the studied examples if the 
oordinates do not rotate.I use bary
entri
 
oordinates and a system of 
oordinates that rotates with variable speed insu
h a way that it follows the 
hange of the dire
tion from the origin to m2 so that this bodyonly moves on the positive x axis with 
hanging distan
e from the origin. Then, as indi
atedby the formula, a 
urve that shows the motion of m3 
loses after one revolution of l - ̟ andfour retrograde revolutions of l - l2 or of the polar angle in the rotating system. Therefore this
urve 
loses after more than one revolution about the origin. Five 
y
les of l2 - ̟2 
orrespondto the period of the solution and rule the motion of m2 on the x-axis. In 
ase of ten studiedorbits both m2 and m3 start at peri
enter and pass apo
enter after one half of a revolution of l- ̟. The plotted 
urves mentioned above show a symmetri
 
ontinuation during the next halfand 
ontinue in the way of a periodi
 solution. Now I will demonstrate that this is due to a4



Table 3: Orbits that approximate periodi
 orbitsNo. m3 mr e2 l2 = ̟2 l = ̟ e a Amax D1 0.3 1.0 0.10 180◦ 180◦ 0.1529064 3.127548 32 2.202 0.3 1.0 0.11 180 180 0.1660143 3.138808 29 2.173 0.3 1.0 0.12 180 180 0.1789816 3.1498155 27 2.154 0.3 1.0 0.13 180 180 0.1917464 3.160249 25 2.125 0.3 1.0 0.14 180 180 0.20424099 3.16978 24 2.096 0.2 0.2 0.10 180 0 0.148134 3.086119 24 1.977 0.2 0.2 0.11 180 0 0.1585801 3.0957085 23 1.968 0.2 0.2 0.12 180 0 0.1691093 3.1052842 22 1.969 0.2 0.2 0.13 180 0 0.1796563 3.11464 21 1.9510 0.2 0.2 0.14 180 0 0.1901554 3.1235563 20 1.9511 1.0 1.0 0.20 180 0 0.2066472 3.4128653 68 2.3112 1.0 1.0 0.21 180 0 0.2157105 3.42422 59 2.2913 1.0 1.0 0.22 180 0 0.2246757 3.435531 55 2.2714 1.0 1.0 0.23 180 0 0.2335476 3.446644 51 2.2615 1.0 1.0 0.24 180 0 0.2423206 3.457444 47 2.24Notes to Table 3. The way of presentation 
orresponds to the pre
eding tables, but m3, mr,and the starting values of the angular elements of m2 and m3 appear in addition. The �lteredamplitude of libration of θ is extremely small so that one 
an put A = 0◦. In general the �lteredvalue of ∆̟ remains at the value given by the starting values during the interval of integrationof 3500 yr, but orbit 5 shows a di�erent type of evolution. All these orbits 
losely approximateperiodi
 orbits. The last �ve orbits refer to the appendix.property of symmetry that appears in the spe
ial system of rotating 
oordinates in use togetherwith the start at peri
enter.Due to the property of symmetry it is possible to predi
t the ba
kward evolution in time of asolution from the result of a forward 
omputation by using the y 
oordinate and the derivativeof x with the opposite sign but these are equal to zero a

ording to the start at peri
enter. I notethat the rotation of the 
oordinates does not produ
e 
omponents of velo
ity in the dire
tionof the x-axis at this moment. All the bodies start at the x axis with a vanishing derivativeof x and the ba
kward and forward 
omputation belong to the same starting values. The twobran
hes of the 
urve found for m3 in this way evolve in a symmetri
 way with respe
t to the xaxis and meet at the x axis after about one half of the predi
ted period or after two revolutionsabout the origin of ea
h. m2 remains at this axis and the motion of m1 results from the law ofbary
enter. If at the meeting the bodies are exa
tly at apo
enter the 
onditions are analogousto the moment of start: the 
ontinuation of ea
h bran
h is symmetri
 to the pre
eding part withrespe
t to the x axis so that the two bran
hes overlie ea
h other. The motion of m2 
orrespondsto this and the solution is periodi
. It is possible to produ
e these 
onditions at the meetingby a variation of the starting values of a and e. A di�erential 
orre
tion is applied to an orbitthat nearly ful�lls the 
onditions.In Table 3 orbits 1 - 5 
orrespond to the 
hoi
e mr = 1 and orbits 6 - 10 to mr = 0.2 . Thetwo sets have resulted by a variation of the starting value of e2. In ea
h 
ase the approximatedperiodi
 orbits are members of a family of periodi
 orbits that evolves with in
reasing values5



of this starting value. With ex
eption of No. 5 orbits in the neighborhood of the listed onesshow an approximately quasi-periodi
 evolution. In 
ase of orbits 6 - 10 this is due to the useof the starting values l = ̟ = 0◦. Orbit No. 5 shows a di�erent type of evolution: Againthe amplitude A is very small but the �ltered variations of ∆̟ do not show libration. Thesevariations start at 0◦ and remain very 
lose to this value during a long period but �nally turno� with in
reasing speed. Orbit No. 5 and nearby orbits indi
ate that ∆̟ is in an unstableequilibrium at the approximated periodi
 orbit.Appendix (added in June 2019)Orbits 11 - 15 of Table 3 approximate periodi
 orbits of the three-body problem m1 = m2 =
m3 = mS . Again I have started from orbits that show a small amplitude of libration of the�ltered values of both θ and ∆̟ during the interval of integration and found nearly vanishingvalues of the two amplitudes by a suitable variation of the starting values of a and e. Orbits inthe vi
inity of the �ve orbits show small values of the period of libration of θ, espe
ially in 
aseof orbit 15. Se
ondary resonan
es with respe
t to a short period 
an appear in the vi
inity ofperiodi
 orbits that start with a larger value of e2. The values of Amax 
hange upward within
reasing speed from orbit 15 to orbit 11. A 
ontinuation of the sequen
e in this dire
tion bythe method in use will not be possible in a domain of orbits with 
ir
ulation of θ or with a
haoti
 evolution.For a demonstration of the evolution of orbits 11 to 15 in rotating 
oordinates I use a di�erentsystem that is analogous to the one used above. The new system rotates with variable speed sothat the x-axis follows the dire
tion from m1 to m2 or from the bary
enter of these two bodiesto m2 . This bary
enter is the origin when I plot the relative 
oordinates of m3 in the newsystem. Again the 
urve resulting for one of the orbits 
loses after four retrograde revolutionsof the polar angle.Sin
e I have rea
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