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Abstract. This study extends earlier results on circumbinary orbits of massless bodies at
resonance to examples of motion of a massive body on the outer orbit. The 1/5 resonance
of the orbital periods of the binary and of the outer body is considered. Again the libration
of a special angular argument continues without change during the long period of numerical
integration and prevents close approaches to a component of the binary. The ratio of the masses
of these components is equal to 1:1 or 5:1. Special orbits show a periodic evolution in rotating
coordinates.

1 Introduction

This study extends Schubart’s numerical studies on the motion of a massless circumbinary body
at the 1/5 resonance. A report on these earlier studies is available at http://wwwstaff.ari.uni-
heidelberg.de/mitarbeiter /schubart. There the file P-Type Planets 2 refers to the 1/5 resonance.
A paper by Schubart (2017) refers to the same subject. Here I report on analogous examples
of motion at this resonance with a massive body on the outer orbit. All the examples show
libration of a critical angular argument. Such processes have appeared in studies on the early
evolution of circumbinary planets by Nelson (2003) and by Kley and Haghighipour (2014) but
many other studies mentioned by Dvorak (2008) and Haghighipour (2010) have started with
a circular orbit of the outer body. This does not lead to the type of libration considered in
this study. Schubart (2017) has mentioned orbits with an earth-sized circumbinary planet and
with libration at the 1/5 resonance. In the present study the mass of the circumbinary body is
about equal to 0.2 or 0.3 solar mass. I have varied the starting values of examples of the earlier
studies to find suitable cases of libration and to explore the range in these starting values that
leads to the same type of evolution. The libration prevents too close approaches of the outer
body to one of the other bodies.

The model of the forces is given by the planar general three-body problem. All the bodies
revolve in the same direction. The ratio of the orbital periods of the binary and of the outer
mass is close to 1:5. The ratio of the masses of the inner pair, m; and ms, equals 1:1 or 5:1
so that mr = ma/m; is equal to 1 or 0.2 . m1+msq is very close to two times solar mass. ms
is the mass of the outer body. Two tables present the starting values of the studied orbits
and show characteristic results. The orbits listed in these tables evolve in an approximately
quasi-periodic way during the extended interval of the numerical computations. A third table
shows some orbits that approximate periodic orbits of the general three-body problem.



2 Designations and methods

I refer to the components of the binary by their masses, m; and ms, and to the outer body
by ms. The simultaneous numerical integration by use of the N-body program by Schubart
and Stumpff (1966) proceeds in barycentric rectangular coordinates and covers about 5000
revolutions of the binary system. I use the value of the solar mass plus mass sum of the four
inner planets recommended for this program to define the unit of mass, mg. I put the sum m; +
me equal to 2 mg. The result of the integration consists in barycentric rectangular coordinates
and velocities but I use different systems in the transformation from or to the osculating elements
that appear in this paper. I derive the elements of ms from relative coordinates with respect
to my that here represents the origin, and I use the sum m;+mo in the transformation. The
elements of m3 depend on relative coordinates with respect to the barycenter of only the two
bodies m; and ms but the sum of all the bodies enters in the transformation. I apply the inverse
transformations to the respective starting values of the osculating elements. All the results of
interest, are stored at equally spaced intervals.

The designations of the elements of m3 are: a = semi-major axis, e = eccentricity, w = longitude
of pericenter, [ = mean longitude. A suffix 2 refers an element to mso. In the present paper these
elements show the relative motion of mo with respect to my. I use the starting values as = 1
au, Iy = wo = 180° and consider several values of es. T'P is the period of revolution or libration
of Aw = w - wa. Since both e and ey are greater than zero, TP or 1/2 T'P are the typical long
periods that appear in the results. Another long period, T'L, is smaller than T'P. The period
TL rules the process of libration of the critical element, 6. I call TL the period of libration.
Here 0 is defined by 6 = I - 5] + 3w + ws. 0 is reduced to the interval -180°<#<180°. I use
digital filtering (Schubart and Bien 1984) to remove the effects of short periods that are about
equal to the orbital period of mg or smaller. This allows the study of effects by T'L and TP in
plots of @ or @ versus time. Then the unit of time equals 10* days. I use this unit in the tables
as well. If necessary the effects by T'L and TP are separated by a special filter.

In Section 3 I present orbits that show a permanent libration of § about 0° according to TL.
The amplitude of this process can be extremely small in special cases. Due to the permanent
libration mg avoids very close approaches to the other bodies: An especially small distance to
my corresponds to [ = ls = w with wy = w + 180°. In this case all the bodies are situated on a
straight line and the components of the binary are at maximum distance from their barycenter,
but then 6 = 180° so that the orbits avoid this situation. An analogous case with respect to
my occurs, if only [ and @ are augmented by 180° but this does not change 6. The avoidance
of close approaches with strong mutual perturbations favors the approximately quasi-periodic
evolution of the orbits.

3  Results about two choices of the ratio my/m,

The main result of the transition from ms3=0 to m3>0 consists in the unchanged qualitativ
long-period evolution of suitable orbits. Although the orbit of the inner binary is perturbed
it joins in this evolution. The frequencies of T'P, T'L, and of the mean period of revolution of
[-l2 together with linear combinations of these frequencies rule the appoximately quasi-periodic
evolution. Now it is essential that the definition of TP depends on both w and wsy and it
is important that the starting values of e and e; are not too small. Otherwise the range of
variation of an eccentricity can include very small values and then @ or wy show rapid changes
during a short interval of time. That does not allow a permanent libration of 6.



Table 1: Characteristic values of orbits that refer to mr = 1

No €2 e a Amax A TL TP D
1 010 0.15 3.13 37° 4° 1.2 17 2.20
2 010 0.15 3.09 86 40 0.9 14 2.12
3 010 0.15 3.11 55 20 1.0 15 2.16
4 0.10 0.15 3.1274 33 0 - 16 2.20
5 010 0.15 3.146 114 36 1.7 18 2.22
6 0.10 0.13 3.13 65 9 1.7 74 2.27
7 010 0.17 3.13 38 2 1.0 6.7 2.15
8 0.12 0.15 3.13 58 21 0.9 6.1 2.19
9 0.14 0.15 3.13 72 36 0.73 4.0 2.17
10 0.15 0.15 3.135 74 39 0.68 3.5 2.17
11  0.15 0.15 3.185 36 1 0.98 3.2 2.28
12 0.15 0.18 3.185 27 4 0.66 4.5 2.18
13 0.15 0.20 3.185 23 1 0.53 8.0 2.12
14 0.07 0.15 3.095 79 14 1.14 2.7 2.16

Notes to Table 1. The table lists the number of an orbit; the starting value of es; the starting
values of the elements e and a of mg; the maximum amplitude, Amaz, of the critical argument
0; the amplitude, A, of the effects due to the period of libration and the length of this period,
TL; the period of revolution of Aw, TP, a value in italics indicates libration of Aw; and at
the end of a line the minimum distance between ms3 and ms or my, D. a and D are given in
au. The unit of time is equal to 10* days, or to about 27.4 yr. The listed results refer to an
interval of integration of 3500 yr.

The starting values of the angular elements of the orbits presented in this section correspond
to the earlier studies of the elliptic restricted problem: [ = w = Iy = wy = 180°. Then 0 starts
at 0°. It is possible to use the former starting values of es, e, and a without change to find
librating orbits for small values of mg but for the large values considered here a new fit of the
starting values of e and a is necessary for each choice of es. At first I start with e = 0.1 to
find a librating orbit. Then I vary the starting values to explore the range in these values that
leads to suitable librating orbits. A variation of a leads to changes of the amplitude of libration
of 6 that is limited. Other variations can lead to orbits with a ratio TP/TL that is close to
the ratio of small integers. A chaotic evolution is possible in the vicinity of such a secondary
resonance. Therefore I do not go beyond such cases with my variations.

Table 1 refers to mr = 1 with mg = 0.3 mg. The table shows the starting values of es, e,
and a and the following characteristic results: Amax, the maximum amplitude shown by the
unfiltered oscillations of 8; A, the amplitude due to the period of libration that is visible in
the filtered variations of these oscillations; the length of the periods T'L and T'P; and D, the
minimum of the distance between mg and one of the other bodies. Orbits No. 1 - 5 show
libration of Aw about 0° and the values of T'P refer to this process. Aw revolves in the re-
maining cases but due to the ratio mr = 1 one half of TP is the dominant period that appears
in the results. Orbits 1 - 5 demonstrate the effect in the values of Amaz and A by the variation
of the starting value of a. The following orbits indicate the range of possible variations in
case of the eccentricities. Table 2 refers to mr = 0.2 with m3 = 0.2 mg and presents the anal-
ogous results. Evidently the last orbits of the tables are in the vicinity of secondary resonances.



Table 2: Characteristic values of orbits that refer to mr = 0.2

No €2 e a Amaxr A TL TP D
1 010 0.15 3.03 32° 2° 1.3 20 1.83
2 010 0.15 3.01 53 24 1.1 15 1.79
3 0.10 0.15 3.04 50 18 14 29 1.83
4 0.10 0.15 3.05 64 41 1.8 19 1.84
5 010 0.15 3.06 116 75 2.4 11 1.85
6 0.10 0.10 3.03 61 11 2.2 8 1.94
7 010 0.13 3.03 38 3 1.5 11 1.88
8 0.12 0.15 3.03 49 17 099 7.0 1.82
9 0.14 0.15 3.03 69 33 0.85 5.3 1.81
10 0.15 0.15 3.04 68 31 0.84 4.7 1.82
11 0.15 0.15 3.07035 36 0 - 4.6 1.90
12 0.15 0.18 3.07 34 2 0.73 5.0 1.81
13 0.15 0.20 3.065 34 3 0.61 5.7 1.74
14 0.15 0.12 3.06 63 15 1.33 4.5 1.93
15 0.08 0.15 3.015 36 1 1.53 4.6 1.80

Notes to Table 2. The way of presentation of Table 2 corresponds to Table 1. Now the results
depend on the smaller value ms = 0.2 mg.

4  Periodic orbits

If Aw librates or if it circulates with a very large period T'P it can be possible to find an orbit
with vanishing filtered amplitudes of libration of both 6 and Aw by a suitable variation of the
starting values of a and e. This happens in case of most of the examples presented in Table 3.
Then two of the basic periods do not show effects in the results. If the evolution of the orbit
of mg is demonstrated in suitable rotating coordinates only effects of short period appear. The
basic short period is given by the revolution of [ - [;. To demonstrate the connection between
another argument and the observed basic periods I write the formula given for 8 in a different
way: 0 = -(I - l2) -4(I - w) - Aw. This indicates that the variation of [ - @ only depends on
short-period effects. Apparently all these effects are ruled by the period of revolution of [ - I5.
Other arguments are equal to linear combinations of the ones that appear in the formula. If
a system of rotating rectangular coordinates is used that is independent of the choice of the
origin of counting the longitudes and if the coordinates of ms are plotted, a curve that evolves
in the way of a periodic solution is expected. I have succeeded in plotting these curves. For
this the use of barycentric rectangular coordinates is suitable since the orbit of mq encircles the
barycenter in case of the studied examples if the coordinates do not rotate.

I use barycentric coordinates and a system of coordinates that rotates with variable speed in
such a way that it follows the change of the direction from the origin to mo so that this body
only moves on the positive x axis with changing distance from the origin. Then, as indicated
by the formula, a curve that shows the motion of mg closes after one revolution of [ - w and
four retrograde revolutions of [ - Is or of the polar angle in the rotating system. Therefore this
curve closes after more than one revolution about the origin. Five cycles of ls - @y correspond
to the period of the solution and rule the motion of ms on the x-axis. In case of ten studied
orbits both my and mg start at pericenter and pass apocenter after one half of a revolution of [
- w. The plotted curves mentioned above show a symmetric continuation during the next half
and continue in the way of a periodic solution. Now I will demonstrate that this is due to a



Table 3: Orbits that approximate periodic orbits

No. m3 mr €2 lo=wy l=w e a Amaz D
1 03 1.0 0.10 180° 180° 0.1529064  3.127548 32 2.20
2 03 1.0 0.11 180 180 0.1660143  3.138808 29 2.17
3 03 1.0 0.12 180 180 0.1789816  3.1498155 27 2.15
4 03 1.0 0.13 180 180 0.1917464 3.160249 25 2.12
5 03 1.0 0.14 180 180 0.20424099 3.16978 24 2.09
6 0.2 0.2 0.10 180 0 0.148134 3.086119 24 1.97
7 0.2 0.2 0.11 180 0 0.1585801  3.0957085 23 1.96
8 0.2 0.2 0.12 180 0 0.1691093 3.1052842 22 1.96
9 02 02 013 180 0 0.1796563  3.11464 21 1.95

10 0.2 0.2 0.14 180 0 0.1901554  3.1235563 20 1.95
11 1.0 1.0 0.20 180 0 0.2066472  3.4128653 68 2.31
12 1.0 1.0 0.21 180 0 0.2157105 3.42422 59 2.29
13 1.0 1.0 0.22 180 0 0.2246757  3.435531 55 2.27
14 1.0 1.0 0.23 180 0 0.2335476 3.446644 51 2.26
15 1.0 1.0 0.24 180 0 0.2423206  3.457444 47 2.24

Notes to Table 3. The way of presentation corresponds to the preceding tables, but mg, mr,
and the starting values of the angular elements of mo and mg appear in addition. The filtered
amplitude of libration of § is extremely small so that one can put A = 0°. In general the filtered
value of Aw remains at the value given by the starting values during the interval of integration
of 3500 yr, but orbit 5 shows a different type of evolution. All these orbits closely approximate
periodic orbits. The last five orbits refer to the appendix.

property of symmetry that appears in the special system of rotating coordinates in use together
with the start at pericenter.

Due to the property of symmetry it is possible to predict the backward evolution in time of a
solution from the result of a forward computation by using the y coordinate and the derivative
of x with the opposite sign but these are equal to zero according to the start at pericenter. I note
that the rotation of the coordinates does not produce components of velocity in the direction
of the x-axis at this moment. All the bodies start at the x axis with a vanishing derivative
of x and the backward and forward computation belong to the same starting values. The two
branches of the curve found for mg in this way evolve in a symmetric way with respect to the x
axis and meet at the x axis after about one half of the predicted period or after two revolutions
about the origin of each. my remains at this axis and the motion of m; results from the law of
barycenter. If at the meeting the bodies are exactly at apocenter the conditions are analogous
to the moment of start: the continuation of each branch is symmetric to the preceding part with
respect to the x axis so that the two branches overlie each other. The motion of mso corresponds
to this and the solution is periodic. It is possible to produce these conditions at the meeting
by a variation of the starting values of a and e. A differential correction is applied to an orbit
that nearly fulfills the conditions.

In Table 3 orbits 1 - 5 correspond to the choice mr = 1 and orbits 6 - 10 to mr = 0.2 . The
two sets have resulted by a variation of the starting value of e5. In each case the approximated
periodic orbits are members of a family of periodic orbits that evolves with increasing values



of this starting value. With exception of No. 5 orbits in the neighborhood of the listed ones
show an approximately quasi-periodic evolution. In case of orbits 6 - 10 this is due to the use
of the starting values | = w = 0°. Orbit No. 5 shows a different type of evolution: Again
the amplitude A is very small but the filtered variations of Aw do not show libration. These
variations start at 0° and remain very close to this value during a long period but finally turn
off with increasing speed. Orbit No. 5 and nearby orbits indicate that A is in an unstable
equilibrium at the approximated periodic orbit.

Appendix (added in June 2019)

Orbits 11 - 15 of Table 3 approximate periodic orbits of the three-body problem m; = mo =
mg = mg . Again I have started from orbits that show a small amplitude of libration of the
filtered values of both 6 and Aw during the interval of integration and found nearly vanishing
values of the two amplitudes by a suitable variation of the starting values of a and e. Orbits in
the vicinity of the five orbits show small values of the period of libration of 6, especially in case
of orbit 15. Secondary resonances with respect to a short period can appear in the vicinity of
periodic orbits that start with a larger value of e;. The values of Amax change upward with
increasing speed from orbit 15 to orbit 11. A continuation of the sequence in this direction by
the method in use will not be possible in a domain of orbits with circulation of # or with a
chaotic evolution.

For a demonstration of the evolution of orbits 11 to 15 in rotating coordinates I use a different
system that is analogous to the one used above. The new system rotates with variable speed so
that the x-axis follows the direction from m; to mo or from the barycenter of these two bodies
to mg . This barycenter is the origin when I plot the relative coordinates of mgs in the new
system. Again the curve resulting for one of the orbits closes after four retrograde revolutions
of the polar angle.

Since I have reached the age of 90 yr I am especially grateful to the director of Astronomisches
Rechen-Institut and to the University of Heidelberg for the possibility to continue with my
studies.
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