
Massive Cirumbinary Bodies atthe 1/5 ResonaneJoahim ShubartUniversity of Heidelberg, ZAHAstronomishes Rehen-InstitutHeidelberg, Germanyshubart�ari.uni-heidelberg.deAbstrat. This study extends earlier results on irumbinary orbits of massless bodies atresonane to examples of motion of a massive body on the outer orbit. The 1/5 resonaneof the orbital periods of the binary and of the outer body is onsidered. Again the librationof a speial angular argument ontinues without hange during the long period of numerialintegration and prevents lose approahes to a omponent of the binary. The ratio of the massesof these omponents is equal to 1:1 or 5:1. Speial orbits show a periodi evolution in rotatingoordinates.1 IntrodutionThis study extends Shubart's numerial studies on the motion of a massless irumbinary bodyat the 1/5 resonane. A report on these earlier studies is available at http://wwwsta�.ari.uni-heidelberg.de/mitarbeiter/shubart. There the �le P-Type Planets 2 refers to the 1/5 resonane.A paper by Shubart (2017) refers to the same subjet. Here I report on analogous examplesof motion at this resonane with a massive body on the outer orbit. All the examples showlibration of a ritial angular argument. Suh proesses have appeared in studies on the earlyevolution of irumbinary planets by Nelson (2003) and by Kley and Haghighipour (2014) butmany other studies mentioned by Dvorak (2008) and Haghighipour (2010) have started witha irular orbit of the outer body. This does not lead to the type of libration onsidered inthis study. Shubart (2017) has mentioned orbits with an earth-sized irumbinary planet andwith libration at the 1/5 resonane. In the present study the mass of the irumbinary body isabout equal to 0.2 or 0.3 solar mass. I have varied the starting values of examples of the earlierstudies to �nd suitable ases of libration and to explore the range in these starting values thatleads to the same type of evolution. The libration prevents too lose approahes of the outerbody to one of the other bodies.The model of the fores is given by the planar general three-body problem. All the bodiesrevolve in the same diretion. The ratio of the orbital periods of the binary and of the outermass is lose to 1:5. The ratio of the masses of the inner pair, m1 and m2, equals 1:1 or 5:1so that mr = m2/m1 is equal to 1 or 0.2 . m1+m2 is very lose to two times solar mass. m3is the mass of the outer body. Two tables present the starting values of the studied orbitsand show harateristi results. The orbits listed in these tables evolve in an approximatelyquasi-periodi way during the extended interval of the numerial omputations. A third tableshows some orbits that approximate periodi orbits of the general three-body problem.1



2 Designations and methodsI refer to the omponents of the binary by their masses, m1 and m2, and to the outer bodyby m3. The simultaneous numerial integration by use of the N-body program by Shubartand Stump� (1966) proeeds in baryentri retangular oordinates and overs about 5000revolutions of the binary system. I use the value of the solar mass plus mass sum of the fourinner planets reommended for this program to de�ne the unit of mass, mS. I put the sum m1 +
m2 equal to 2 mS . The result of the integration onsists in baryentri retangular oordinatesand veloities but I use di�erent systems in the transformation from or to the osulating elementsthat appear in this paper. I derive the elements of m2 from relative oordinates with respetto m1 that here represents the origin, and I use the sum m1+m2 in the transformation. Theelements of m3 depend on relative oordinates with respet to the baryenter of only the twobodies m1 and m2 but the sum of all the bodies enters in the transformation. I apply the inversetransformations to the respetive starting values of the osulating elements. All the results ofinterest are stored at equally spaed intervals.The designations of the elements of m3 are: a = semi-major axis, e = eentriity, ̟ = longitudeof perienter, l = mean longitude. A su�x 2 refers an element to m2. In the present paper theseelements show the relative motion of m2 with respet to m1. I use the starting values a2 = 1au, l2 = ̟2 = 180◦ and onsider several values of e2. TP is the period of revolution or librationof ∆̟ = ̟ - ̟2. Sine both e and e2 are greater than zero, TP or 1/2 TP are the typial longperiods that appear in the results. Another long period, TL, is smaller than TP . The period
TL rules the proess of libration of the ritial element, θ. I all TL the period of libration.Here θ is de�ned by θ = l2 - 5l + 3̟ + ̟2. θ is redued to the interval -180◦<θ<180◦. I usedigital �ltering (Shubart and Bien 1984) to remove the e�ets of short periods that are aboutequal to the orbital period of m3 or smaller. This allows the study of e�ets by TL and TP inplots of θ or ̟ versus time. Then the unit of time equals 104 days. I use this unit in the tablesas well. If neessary the e�ets by TL and TP are separated by a speial �lter.In Setion 3 I present orbits that show a permanent libration of θ about 0◦ aording to TL.The amplitude of this proess an be extremely small in speial ases. Due to the permanentlibration m3 avoids very lose approahes to the other bodies: An espeially small distane to
m2 orresponds to l = l2 = ̟ with ̟2 = ̟ + 180◦. In this ase all the bodies are situated on astraight line and the omponents of the binary are at maximum distane from their baryenter,but then θ = 180◦ so that the orbits avoid this situation. An analogous ase with respet to
m1 ours, if only l and ̟ are augmented by 180◦ but this does not hange θ. The avoidaneof lose approahes with strong mutual perturbations favors the approximately quasi-periodievolution of the orbits.3 Results about two hoies of the ratio m2/m1The main result of the transition from m3=0 to m3>0 onsists in the unhanged qualitativlong-period evolution of suitable orbits. Although the orbit of the inner binary is perturbedit joins in this evolution. The frequenies of TP , TL, and of the mean period of revolution of
l-l2 together with linear ombinations of these frequenies rule the appoximately quasi-periodievolution. Now it is essential that the de�nition of TP depends on both ̟ and ̟2 and itis important that the starting values of e and e2 are not too small. Otherwise the range ofvariation of an eentriity an inlude very small values and then ̟ or ̟2 show rapid hangesduring a short interval of time. That does not allow a permanent libration of θ.2



Table 1: Charateristi values of orbits that refer to mr = 1No. e2 e a Amax A TL TP D1 0.10 0.15 3.13 37◦ 4◦ 1.2 17 2.202 0.10 0.15 3.09 86 40 0.9 14 2.123 0.10 0.15 3.11 55 20 1.0 15 2.164 0.10 0.15 3.1274 33 0 - 16 2.205 0.10 0.15 3.146 114 36 1.7 18 2.226 0.10 0.13 3.13 65 9 1.7 7.4 2.277 0.10 0.17 3.13 38 2 1.0 6.7 2.158 0.12 0.15 3.13 58 21 0.9 6.1 2.199 0.14 0.15 3.13 72 36 0.73 4.0 2.1710 0.15 0.15 3.135 74 39 0.68 3.5 2.1711 0.15 0.15 3.185 36 1 0.98 3.2 2.2812 0.15 0.18 3.185 27 4 0.66 4.5 2.1813 0.15 0.20 3.185 23 1 0.53 8.0 2.1214 0.07 0.15 3.095 79 14 1.14 2.7 2.16Notes to Table 1. The table lists the number of an orbit; the starting value of e2; the startingvalues of the elements e and a of m3; the maximum amplitude, Amax, of the ritial argument
θ; the amplitude, A, of the e�ets due to the period of libration and the length of this period,
TL; the period of revolution of ∆̟, TP , a value in italis indiates libration of ∆̟; and atthe end of a line the minimum distane between m3 and m2 or m1, D. a and D are given inau. The unit of time is equal to 104 days, or to about 27.4 yr. The listed results refer to aninterval of integration of 3500 yr.The starting values of the angular elements of the orbits presented in this setion orrespondto the earlier studies of the ellipti restrited problem: l = ̟ = l2 = ̟2 = 180◦. Then θ startsat 0◦. It is possible to use the former starting values of e2, e, and a without hange to �ndlibrating orbits for small values of m3 but for the large values onsidered here a new �t of thestarting values of e and a is neessary for eah hoie of e2. At �rst I start with e2 = 0.1 to�nd a librating orbit. Then I vary the starting values to explore the range in these values thatleads to suitable librating orbits. A variation of a leads to hanges of the amplitude of librationof θ that is limited. Other variations an lead to orbits with a ratio TP/TL that is lose tothe ratio of small integers. A haoti evolution is possible in the viinity of suh a seondaryresonane. Therefore I do not go beyond suh ases with my variations.Table 1 refers to mr = 1 with m3 = 0.3 mS . The table shows the starting values of e2, e,and a and the following harateristi results: Amax, the maximum amplitude shown by theun�ltered osillations of θ; A, the amplitude due to the period of libration that is visible inthe �ltered variations of these osillations; the length of the periods TL and TP ; and D, theminimum of the distane between m3 and one of the other bodies. Orbits No. 1 - 5 showlibration of ∆̟ about 0◦ and the values of TP refer to this proess. ∆̟ revolves in the re-maining ases but due to the ratio mr = 1 one half of TP is the dominant period that appearsin the results. Orbits 1 - 5 demonstrate the e�et in the values of Amax and A by the variationof the starting value of a. The following orbits indiate the range of possible variations inase of the eentriities. Table 2 refers to mr = 0.2 with m3 = 0.2 mS and presents the anal-ogous results. Evidently the last orbits of the tables are in the viinity of seondary resonanes.3



Table 2: Charateristi values of orbits that refer to mr = 0.2No. e2 e a Amax A TL TP D1 0.10 0.15 3.03 32◦ 2◦ 1.3 20 1.832 0.10 0.15 3.01 53 24 1.1 15 1.793 0.10 0.15 3.04 50 18 1.4 29 1.834 0.10 0.15 3.05 64 41 1.8 19 1.845 0.10 0.15 3.06 116 75 2.4 11 1.856 0.10 0.10 3.03 61 11 2.2 8 1.947 0.10 0.13 3.03 38 3 1.5 11 1.888 0.12 0.15 3.03 49 17 0.99 7.0 1.829 0.14 0.15 3.03 69 33 0.85 5.3 1.8110 0.15 0.15 3.04 68 31 0.84 4.7 1.8211 0.15 0.15 3.07035 36 0 - 4.6 1.9012 0.15 0.18 3.07 34 2 0.73 5.0 1.8113 0.15 0.20 3.065 34 3 0.61 5.7 1.7414 0.15 0.12 3.06 63 15 1.33 4.5 1.9315 0.08 0.15 3.015 36 1 1.53 4.6 1.80Notes to Table 2. The way of presentation of Table 2 orresponds to Table 1. Now the resultsdepend on the smaller value m3 = 0.2 mS .4 Periodi orbitsIf ∆̟ librates or if it irulates with a very large period TP it an be possible to �nd an orbitwith vanishing �ltered amplitudes of libration of both θ and ∆̟ by a suitable variation of thestarting values of a and e. This happens in ase of most of the examples presented in Table 3.Then two of the basi periods do not show e�ets in the results. If the evolution of the orbitof m3 is demonstrated in suitable rotating oordinates only e�ets of short period appear. Thebasi short period is given by the revolution of l - l2. To demonstrate the onnetion betweenanother argument and the observed basi periods I write the formula given for θ in a di�erentway: θ = -(l - l2) -4(l - ̟) - ∆̟. This indiates that the variation of l - ̟ only depends onshort-period e�ets. Apparently all these e�ets are ruled by the period of revolution of l - l2.Other arguments are equal to linear ombinations of the ones that appear in the formula. Ifa system of rotating retangular oordinates is used that is independent of the hoie of theorigin of ounting the longitudes and if the oordinates of m3 are plotted, a urve that evolvesin the way of a periodi solution is expeted. I have sueeded in plotting these urves. Forthis the use of baryentri retangular oordinates is suitable sine the orbit of m2 enirles thebaryenter in ase of the studied examples if the oordinates do not rotate.I use baryentri oordinates and a system of oordinates that rotates with variable speed insuh a way that it follows the hange of the diretion from the origin to m2 so that this bodyonly moves on the positive x axis with hanging distane from the origin. Then, as indiatedby the formula, a urve that shows the motion of m3 loses after one revolution of l - ̟ andfour retrograde revolutions of l - l2 or of the polar angle in the rotating system. Therefore thisurve loses after more than one revolution about the origin. Five yles of l2 - ̟2 orrespondto the period of the solution and rule the motion of m2 on the x-axis. In ase of ten studiedorbits both m2 and m3 start at perienter and pass apoenter after one half of a revolution of l- ̟. The plotted urves mentioned above show a symmetri ontinuation during the next halfand ontinue in the way of a periodi solution. Now I will demonstrate that this is due to a4



Table 3: Orbits that approximate periodi orbitsNo. m3 mr e2 l2 = ̟2 l = ̟ e a Amax D1 0.3 1.0 0.10 180◦ 180◦ 0.1529064 3.127548 32 2.202 0.3 1.0 0.11 180 180 0.1660143 3.138808 29 2.173 0.3 1.0 0.12 180 180 0.1789816 3.1498155 27 2.154 0.3 1.0 0.13 180 180 0.1917464 3.160249 25 2.125 0.3 1.0 0.14 180 180 0.20424099 3.16978 24 2.096 0.2 0.2 0.10 180 0 0.148134 3.086119 24 1.977 0.2 0.2 0.11 180 0 0.1585801 3.0957085 23 1.968 0.2 0.2 0.12 180 0 0.1691093 3.1052842 22 1.969 0.2 0.2 0.13 180 0 0.1796563 3.11464 21 1.9510 0.2 0.2 0.14 180 0 0.1901554 3.1235563 20 1.9511 1.0 1.0 0.20 180 0 0.2066472 3.4128653 68 2.3112 1.0 1.0 0.21 180 0 0.2157105 3.42422 59 2.2913 1.0 1.0 0.22 180 0 0.2246757 3.435531 55 2.2714 1.0 1.0 0.23 180 0 0.2335476 3.446644 51 2.2615 1.0 1.0 0.24 180 0 0.2423206 3.457444 47 2.24Notes to Table 3. The way of presentation orresponds to the preeding tables, but m3, mr,and the starting values of the angular elements of m2 and m3 appear in addition. The �lteredamplitude of libration of θ is extremely small so that one an put A = 0◦. In general the �lteredvalue of ∆̟ remains at the value given by the starting values during the interval of integrationof 3500 yr, but orbit 5 shows a di�erent type of evolution. All these orbits losely approximateperiodi orbits. The last �ve orbits refer to the appendix.property of symmetry that appears in the speial system of rotating oordinates in use togetherwith the start at perienter.Due to the property of symmetry it is possible to predit the bakward evolution in time of asolution from the result of a forward omputation by using the y oordinate and the derivativeof x with the opposite sign but these are equal to zero aording to the start at perienter. I notethat the rotation of the oordinates does not produe omponents of veloity in the diretionof the x-axis at this moment. All the bodies start at the x axis with a vanishing derivativeof x and the bakward and forward omputation belong to the same starting values. The twobranhes of the urve found for m3 in this way evolve in a symmetri way with respet to the xaxis and meet at the x axis after about one half of the predited period or after two revolutionsabout the origin of eah. m2 remains at this axis and the motion of m1 results from the law ofbaryenter. If at the meeting the bodies are exatly at apoenter the onditions are analogousto the moment of start: the ontinuation of eah branh is symmetri to the preeding part withrespet to the x axis so that the two branhes overlie eah other. The motion of m2 orrespondsto this and the solution is periodi. It is possible to produe these onditions at the meetingby a variation of the starting values of a and e. A di�erential orretion is applied to an orbitthat nearly ful�lls the onditions.In Table 3 orbits 1 - 5 orrespond to the hoie mr = 1 and orbits 6 - 10 to mr = 0.2 . Thetwo sets have resulted by a variation of the starting value of e2. In eah ase the approximatedperiodi orbits are members of a family of periodi orbits that evolves with inreasing values5



of this starting value. With exeption of No. 5 orbits in the neighborhood of the listed onesshow an approximately quasi-periodi evolution. In ase of orbits 6 - 10 this is due to the useof the starting values l = ̟ = 0◦. Orbit No. 5 shows a di�erent type of evolution: Againthe amplitude A is very small but the �ltered variations of ∆̟ do not show libration. Thesevariations start at 0◦ and remain very lose to this value during a long period but �nally turno� with inreasing speed. Orbit No. 5 and nearby orbits indiate that ∆̟ is in an unstableequilibrium at the approximated periodi orbit.Appendix (added in June 2019)Orbits 11 - 15 of Table 3 approximate periodi orbits of the three-body problem m1 = m2 =
m3 = mS . Again I have started from orbits that show a small amplitude of libration of the�ltered values of both θ and ∆̟ during the interval of integration and found nearly vanishingvalues of the two amplitudes by a suitable variation of the starting values of a and e. Orbits inthe viinity of the �ve orbits show small values of the period of libration of θ, espeially in aseof orbit 15. Seondary resonanes with respet to a short period an appear in the viinity ofperiodi orbits that start with a larger value of e2. The values of Amax hange upward withinreasing speed from orbit 15 to orbit 11. A ontinuation of the sequene in this diretion bythe method in use will not be possible in a domain of orbits with irulation of θ or with ahaoti evolution.For a demonstration of the evolution of orbits 11 to 15 in rotating oordinates I use a di�erentsystem that is analogous to the one used above. The new system rotates with variable speed sothat the x-axis follows the diretion from m1 to m2 or from the baryenter of these two bodiesto m2 . This baryenter is the origin when I plot the relative oordinates of m3 in the newsystem. Again the urve resulting for one of the orbits loses after four retrograde revolutionsof the polar angle.Sine I have reahed the age of 90 yr I am espeially grateful to the diretor of AstronomishesRehen-Institut and to the University of Heidelberg for the possibility to ontinue with mystudies.ReferenesDvorak, R. (ed.): Extrasolar Planets. Wiley Verlag, Weinheim (2008)Haghighipour, N. (ed.): Planets in Binary Star Systems. Astrophysis and SpaeSiene Library. Springer, Heidelberg (2010)Kley, W., Haghighipour, N.: Modeling irumbinary planets: The ase of Kepler-38. As-tron.Astrophys. 564,A72,1-14 (2014)Nelson, R.P.: On the evolution of giant protoplanets forming in iumbinarydiss. Mon.Not.R.Astron.So. 345,233-242 (2003)Shubart, J.: Libration of arguments of irumbinary-planet orbits atresonane. Celest.Meh.Dyn.Astr. 128,295-301 (2017)Shubart, J., Bien, R.: An Appliation of Labrouste's method to quasi-periodiasteroidal motion. Celest.Meh. 34,443-452 (1984)Shubart, J., Stump�, P.: On an N-body program of high auray for theomputation of ephemerides of minor planets and omets. Verö�entl. Astron.Rehen-Institut Heidelberg 18,1-31 (1966)
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