
Chapter 1

Boundary value problems

Numerical linear algebra techniques can be used for many physical problems. In this
chapter we will give some examples of how these techniques can be used to solve certain
boundary value problems that occur in physics.

1.1 A 1-D generalized diffusion equation

Consider a 1-D stationary state diffusion-type equation, which we will call the “generalized
diffusion equation” from now on:

− d

dx

(

D(x)
dy(x)

dx

)

+ K(x) y(x) = q(x) (1.1)

where D(x) > 0 is the diffusion coefficient, K(x) > 0 is some given function (its meaning
will be elucidated later) and q(x) > 0 is a source function.

To solve this problem, we have to specify a finite domain xleft ≤ x ≤ xright and give the
boundary conditions. For problems of this kind (diffusion-like) there are two “classical”
types of boundary conditions that are usually imposed:

• Dirichlet boundary condition: Here you simply specify the value of the function y(x)
at the boundary/boundaries.

• Neumann boundary condition: Here you specify the value of the derivative of y(x)
at the boundary/boundaries.

but one can also specify a mixture of the two.
A second order ordinary differential equation (ODE) requires two boundary conditions.

They could in principle be specified both at one side (either x = xleft or x = xright) or one at
each side. The latter will turn out to be the best (and usually physically most reasonable)
choice. But in the lecture course we have so far not encountered methods of solution
that can deal with boundary conditions imposed at both ends of the domain. We have
so far only dealt with problems that can be integrated in time or space from one position
(e.g. x = xleft) to the other (e.g. x = xright), which requires us to impose all boundary
conditions at the starting point. In this chapter we deal with methods to handle problems
which require us to impose boundary conditions at opposite sides of the domain. Such
problem are called boundary value problems.

1



1.1.1 The discretized version of the equation

To solve this equation numerically, we have to define a grid in x, i.e. a discrete set of
sampling points xi with i = 1 · · ·N . We often regard these points as the centers of cells.
These cells have cell walls located between the xi sampling points. Usually their location
are denoted with xi+1/2, where the i + 1/2 is just meant to say “between i and i + 1” and
equivalently xi−1/2, where the i − 1/2 is just meant to say “between i − 1 and i”. We can
then define the cell walls to be located at:

xi+1/2 = 1
2
(xi + xi+1) xi−1/2 = 1

2
(xi−1 + xi) (1.2)

In a computer we cannot use “half integers” as array indices, so we will have to define for
instance the variables:

• xc[1]· · ·xc[N]: The cell center positions xi.

• xi[1]· · ·xi[N+1]: The cell wall positions xi−1/2. Note that for N cells we have N +1
walls!

Now let’s make a regularly spaced grid:

xi = xleft + (i − 1/2)∆x (1.3)

xi−1/2 = xleft + (i − 1)∆x (1.4)

where i = 1 · · ·N . We place our variables on the xi positions. First derivatives of some
function f(x) at the xi±1/2 positions:

(

df

dx

)

i+1/2

=
fi+1 − fi

xi+1 − xi

=
fi+1 − fi

∆x
(1.5)

This expression is accurate to second order in ∆x (you can verify this by using a Taylor
expansion of the true function f(x) around x = xi). Likewise we can express the first
derivative of f(x) at the xi position is:

(

df

dx

)

i

=
fi+1 − fi−1

xi+1 − xi−1

=
fi+1 − fi−1

2∆x
(1.6)

which is also second order accurate.
The second derivative of f(x) at the x = xi position can be found by taking the

derivative of Eq. (1.5):

(

d2f

dx2

)

i

=
1

∆x

[

(

df

dx

)

i+1/2

−
(

df

dx

)

i−1/2

]

=
fi+1 − 2fi + fi−1

∆x2
(1.7)

In Eq. (1.1), however, we have to not just take the second derivative, but the derivative
of some function D(x) times a derivative:

(

d

dx

[

D(x)
df

dx

])

i

=
1

∆x

[

Di+1/2

(

df

dx

)

i+1/2

− Di−1/2

(

df

∆x

)

i−1/2

]

=
1

∆x

[

Di+1/2

(

fi+1 − fi

∆x

)

− Di−1/2

(

fi − fi−1

∆x

)]

(1.8)

2



Using these definitions we can discretize Eq. (1.1):

1

∆x

[

Di−1/2

(

yi − yi−1

∆x

)

− Di+1/2

(

yi+1 − yi

∆x

)]

+ Kiyi = qi (1.9)

We now must find a way to solve this equation numerically. We will first look at the
“shooting method”, but soon after we will discuss a better (more stable) method based on
a tridiagonal matrix equation.

Note: Eq. (1.9) is already the fully defined discretized version of Eq. (1.1), which
is second order accurate in ∆x. If you would instead wish to integrate Eq. (1.1) using
e.g. Runge-Kutta, then that Runge-Kutta procedure itself will define a discretization.
Here, however, we will simply stick to the second order discretization of Eq. (1.9).

1.1.2 Discrete versions of Dirichlet or Neumann boundary con-

ditions

While Eq. (1.9) defines the discrete version of the ODE, the discrete versions of the bound-
ary conditions have to be specified separately. For a Dirichlet boundary condition (let’s
take the left boundary as an example) we simply replace Eq. (1.9) for i = 1 with

y1 = yleft (1.10)

A Neumann boundary condition would replace Eq. (1.9) for i = 1 with

y2 − y1

∆x
= y′

left (1.11)

and likewise for the right boundary.

1.1.3 The “shooting method”

One way to solve Eq. (1.9) is to use the shooting method. Consider a case when we wish
to impose Dirichlet boundary conditions at both ends: y(xleft) = y0 and y(xright) = y1.
We could in principle make an initial guess for the derivative y′

left at x = xleft, and then,
together with y(xleft) = y0, integrate from xleft to xright. Usually we will then obtain a
value of y(xright) that is not equal to y1. But we can now adjust our initial guess of y′

left

and redo the integration, again comparing the resulting y(xright) with what we want it to
be (y1). By using a clever scheme for adjusting the guess of y′

left to obtain values of y(xright)
that are closer and closer to the desired value y1 we eventually obtain the solution we seek.
This is the shooting method. It allows us to use any of the numerical integration schemes
we learned before (Euler, Numerov, Runge-Kutta etc) to integrate the equation from xleft

to xright. All we need to do is develop a clever method for adjusting our guess for y′

left.
One way to do this is to create a function f(ξ), with ξ being our guess for y′

left, where
f(ξ) = y(xright)−y1 for the given value of ξ. We can then use any off-the-shelf root-finding
routine (such as the zbrent() routine of Numerical Recipes) to find the value for ξ for
which f(ξ) = 0. The function y(x) obtained for that value of ξ is then the solution.

This method works well for the classic diffusion equation:

− d

dx

(

D(x)
dy(x)

dx

)

= q(x) (1.12)

3



which is the generalized diffusion equation with K(x) = 0. But if K(x) > 0 then this
shooting method diverges hopelessly! You can verify this, for instance, with the simple
example of xleft = −10, xright = 10, D(x) = 1, q(x) = 1 and K(x) = 1 with boundary
conditions at x = xleft of y(xleft) = 1 and y′

left = 1. This yields y(xright) ≃ 2.5 × 108.
The shooting method may still work, but it is far less reliable when the equation tends to
diverge so quickly. Moreover, the precision of the choice of the value of y′

left required to
meet the boundary condition at x = xright may be higher than the float or double precision
arithmatic can deal with.

1.1.4 Why does the “shooting method” often fail?

Consider the following version of the above generalized diffusion equation:

1

3

d2y(x)

dx2
= y(x) − q(x) (1.13)

This is an equation that often appears in the theory of radiative transfer: the diffuse
movement of radiation through opaque media, e.g. clouds in the Earth’s atmosphere. To
see why the shooting method tends to create divergencies, we can rewrite this equation
into the form of two coupled first order differential equations:

dy(x)

dx
= −3z(x) (1.14)

dz(x)

dx
= q(x) − y(x) (1.15)

In matrix form:
d

dx

(

y
z

)

=

(

0 −3
−1 0

) (

y
z

)

+

(

0
q

)

(1.16)

The matrix has eigenvalues λ = ±
√

3. Evidently it has one negative and one positive
eigenvalue. We already know that an equation of the type dy/dx = λy diverges if you
integrate from left to right if λ > 0. Since we have at least one such diverging eigenvalue,
this must exponentially diverge! This is the cause of the problem. In fact, integrating in
the opposite direction won’t help: there, also, there is a diverging component.

By the way (as a side-note): If you try to do the same analysis (i.e. splitting the
second order equation into a matrix equation of first order) to the classic diffusion equation
(Eq. 1.12) you will encounter a defective matrix: A matrix for which no complete set of
Eigenvectors exists. Exercise: verify this. Lesson: The above analysis of a system’s
diverging or converging “eigencomponents” does not always apply; but often it does. In
this particular case of a classic diffusion equation the shoothing method works fine.

1.1.5 Casting the problem into a matrix equation

Clearly, for problems for which the shooting method fails, we must find an alternative
method: one in which we can impose one boundary condition on one side and one on
the other side from the start. This can be done by constructing the matrix equation
corresponding to Eq. (1.9) and its boundary conditions. We define the N -dimensional
vectors y and q as

y = (y1, y2, · · · , yN−1, yN)T q = (q1, q2, · · · , qN−1, qN )T (1.17)

4



We now want to construct an N × N matrix A such that the equation

A · y = q (1.18)

(where · is the matrix-vector product) represents Eq. (1.9) with the corresponding bound-
ary conditions. You can see that Eq. (1.9) for some i contains yi−1, yi and yi+1, but no
other y-values. And the Dirichlet or Neumann boundary conditions only involve y1 and
y2 (for the left boundary) and yN−1 and yN (for the right boundary). In other words: the
matrix A is a tridiagonal matrix:

A =























b1 c1 0 0 · · · 0 0 0 0
a2 b2 c2 0 · · · 0 0 0 0
0 a3 b3 c3 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · aN−2 bN−2 cN−2 0
0 0 0 0 · · · 0 aN−1 bN−1 cN−1

0 0 0 0 · · · 0 0 aN bN























(1.19)

The matrix elements and right-hand-side elements can be found from Eq. (1.9). For 2 ≤
i ≤ N − 1 we have

ai = −
Di−1/2

∆x2
(1.20)

bi =
Di−1/2 + Di+1/2

∆x2
+ Ki (1.21)

ci = −
Di+1/2

∆x2
(1.22)

ri = qi (1.23)

Now suppose we put a Neumann boundary condition on the left side and a Dirichlet
boundary condition on the right side. We then get:

b1 = 1/∆x (1.24)

c1 = −1/∆x (1.25)

r1 = y′

left (1.26)

aN = 0 (1.27)

bN = 1 (1.28)

rN = yright (1.29)

We can now use a tridiagonal matrix equation solver (see exercises) to solve this system
of equations. This immediately gives us our solution, because we have a linear problem.

1.2 Heat conduction

The generalized diffusion equation has many applications. One of them is heat transport.
It is an every-day experience that heat tends to move from hot regions to cooler regions.
One can express this quantitatively as

~F (~x) = −D(~x)~∇T (~x) (1.30)

5



where ~x is the spatial position vector and ~F (~x) is the heat flux and D(~x) the heat conduc-
tivity coefficient (which we allow to vary in space). Consider now a source function q(~x).
The stationary-state conservation of energy now reads:

~∇ · ~F (~x) = −~∇ · [D(~x)~∇T (~x)] = q(~x) (1.31)

In 1-D this equation becomes

− d

dx

(

D(x)
dT (x)

dx

)

= q(x) (1.32)

We can now solve this using the above matrix equation. In the exercise class we will work
out an explicit example.

1.3 2-D Diffusion problem

So what about a 2-D heat conduction problem? The equation is

− d

dx

(

D(x, y)
dT (x, y)

dx

)

− d

dy

(

D(x, y)
dT (x, y)

dy

)

= q(x, y) (1.33)

Let us, for simplicity, take D(x, y) = D =constant, so that the equation becomes

−D

(

d2T (x, y)

dx2
+

d2T (x, y)

dy2

)

= q(x, y) (1.34)

How do we cast this into matrix form? Let us first define a grid in x and y: We have xi

with 1 ≤ i ≤ N and yj with 1 ≤ j ≤ M . We construct both the x and y grids in the same
way as we did for the 1-D case (Section 1.1.1). We thus have an N × M grid. We wish
to solve for Ti,j. In order to be able to make a matrix equation for this, we must define a
large vector z:

z = (T1,1, · · · , TN,1, T1,2, · · · , TN,2, · · · , · · · , T1,M−1, · · · , TN,M−1, T1,M , · · · , TN,M)T (1.35)

i.e. a vector with NM components. So for a grid of 20×30 (i.e. N = 20, M = 30) we have
a vector of 600 components: z1, · · · z600. We also create a vector r for the right-hand-side
of the equation:

r = (q1,1, · · · , qN,1, q1,2, · · · , qN,2, · · · , · · · , q1,M−1, · · · , qN,M−1, q1,M , · · · , qN,M)T (1.36)

We then want to construct a matrix A such that

A · z = r (1.37)

is the matrix-equation corresponding to Eq. (1.34). It turns out that, like the case of a
tridiagonal matrix, also here most of the elements of the matrix A are zero, except for
some special locations. However, in this case the matrix is not tridiagonal anymore. It is
“tridiagonal with sidebands”:

Ak,k = 4D/∆x2 (1.38)

Ak+1,k = −D/∆x2 (1.39)

Ak−1,k = −D/∆x2 (1.40)

Ak+N,k = −D/∆x2 (1.41)

Ak−N,k = −D/∆x2 (1.42)

6



for k = i + (j − 1)N with 2 ≤ i ≤ N − 1 and 2 ≤ j ≤ M − 1. The boundary conditions
have to be specified all around the domain, i.e. at all yj for xi = x1, all yj for xi = xN , all
xi for yj = y1 and all xi for yj = yM .

In spite of the fact that also this matrix A has mostly 0-elements (it is a so-called sparse

matrix), the presence of the side-bands now makes it less easy to solve the matrix equation
than for a tridiagonal matrix. So we are forced back to the LU-decomposition method.
But for very large N and M this may become extremely computationally expensive.

Fortunately there is a whole class of methods that can solve such sparse matrix equations

relatively efficiently even for large NM . Most of these are based on iteration. Some
famous methods are GMRES, BiCG, BiCGSTAB. We will not go into these methods here. It is
just important to remember that for large multi-dimensional problems, the corresponding
matrix equations usually are very large sparse matrix equations that require such special
methods such as GMRES, BiCG or BiCGSTAB to be solved within reasonable time.

Note that in a similar manner one can do to 3-D. This adds two more side bands, even
further away from the diagonal.

1.4 The Cable Equation

The cable equation is a simple model of signal propagation through neuronal fibres (den-
drites/axons). The model is related to the telegraph equation for signal propagation through
electric wires.

The model describes a neuronal fibre as a cylinder of radius a containing intracellular
fluid (cytosol). The surface of the cylinder consists of two membranes, the phospholipid
bilayer, that act as a capacitance that can store charge. We write the capacitance per
unit surface of the pair of membranes as cm (unit: Farad/m2). The bilayer is a reasonably
good insulator, but not perfect. It has a certain resistance times unit surface rm (unit:
Ohm·m2). This means that some of the current that flows through the fibre can leak
out sideways through the double membrane of the fibre. Let us call this current-per-unit-
surface im (unit: Ampère/m2), and define it positive for current flowing out of the fibre.
Let us define the voltage at the inside of the bilayer as V while the voltage outside the
bilayer as 0. Ohm’s law then states

im =
V

rm
(1.43)

If V changes with time, then part of this current is consumed in readjusting the charge in
the capacitor. This is called the displacement current, which we will write as id:

id = −cm
∂V

∂t
(1.44)

The remainder of im is actual current from the cytosol to the outside of the fibre, i.e. this
is the leaking current il:

il = im − id (1.45)

Now let us look at how a current moves along the cylinder. Define the current in the
cylinder as I(x, t), where x is the coordinate along the cylinder and t is time, and I > 0
for current flowing toward positive x. Define the resistance along the cable as R. If we
first assume that there is no loss through the membranes rm = ∞ and that the membranes

7



have zero capacity cm = 0, then we can look at a steady-state situation. The voltage V (x)
and current I must obey

∂V (x)

∂x
= −RI (1.46)

where I(x) = I =constant. However, with the membrane capacitance and finite resistance
the equation becomes more complex.

Let us introduce the current through the membrane per unit length of cable Im, as well
as Il and Id as

Im = 2πaim Il = 2πail Id = 2πaid (1.47)

the capacitance per unit length of cable Cm as

Cm = 2πa cm (1.48)

and the membrane resistance times unit length of cable Rm as

Rm =
rm

2πa
(1.49)

We can then write the continuity equation for I(x) (ignoring the ∂/∂t term) as

∂I(x)

∂x
= −Il = Id − Im = −Cm

∂V

∂t
− V

Rm

(1.50)

and inserting Eq. (1.46) we obtain

1

R

∂2V

∂x2
= Cm

∂V

∂t
+

V

Rm
(1.51)

where we write V instead of V (x, t) just for clarity of the equation. This equation is called
the cable equation.

We can make this equation dimensionless by introducing a length scale λ =
√

Rm/R
and a time scale τ = CmRm. Then the equation becomes

λ2∂2V

∂x2
= τ

∂V

∂t
+ V (1.52)

1.4.1 Stationary state solutions

For a steady-state situation the cable equation becomes

λ2∂2V

∂x2
= V (1.53)

which is, for the choice λ = 1/
√

3 identical to the diffusion equation for radiative transfer,
Eq. (1.13) with q(x) = 0. So also for the cable equation we expect that a shooting method
approach will fail, so we need to solve a matrix equation instead. This goes perfectly
analogous to what we did in Section 1.1.5.

8



1.4.2 Time-dependent solutions

A straightforward discretization of the cable equation for time-dependent Euler integration
reads

τ
V n+1

i − V n
i

∆t
= λ2 V n

i+1 − 2V n
i + V n

i−1

∆x2
− V n

i (1.54)

where V n
i is the potential at position i and time step n. Finding V n+1

i in this manner can
work, but only if ∆t ≪ τ∆x2/λ2. For ∆t & τ∆x2/λ2 this direct forward Euler integration
becomes numerically violently unstable! It means that one may need to do very many time
steps, meaning a computationally expensive integration.

An often-used trick to speed up the calculation is to rewrite the equation in the following
way:

τ
V n+1

i − V n
i

∆t
= λ2V n+1

i+1 − 2V n+1
i + V n+1

i−1

∆x2
− V n+1

i (1.55)

i.e. take as the right-hand-side the future variables instead of the current ones. Putting all
future variables to the left and all current ones to the right, we obtain

τ
V n+1

i

∆t
− λ2V n+1

i+1 − 2V n+1
i + V n+1

i−1

∆x2
+ V n+1

i = τ
V n

i

∆t
(1.56)

which can be cast into a matrix equation and solved for V n+1
i . In other words, the matrix

equation gives us the values of Vi at the next time step. This is called implicit integration

(or implicit differencing) of the partial differential equation. It turns out that with this
method the integration is numerically stable, even for relatively large ∆t.

1.5 Afterword

In this chapter we have dealt with linear boundary value problems. However, in practice,
many boundary value problems are non-linear. Nevertheless one can use the same methods
as above, but now in an iterative scheme. For each iteration we write the vector y =
yprev + δy, where yprev is the vector y from the previous iteration. We then linearize the
equations in δy and solve for δy. We will not go into detail on this, because the principles
are identical to those of Newton-Raphson iteration for root-finding.

9


