Exercises Lecture Computational Physics (Summer 2010)

Lecturers: Volker Springel & Rainer Spurzem Tutors: Lei Liu & Justus Schneider Sheet 3 (May 4, 2011)

1 Mathematica exercises

- Repeat and vary the Mathematica examples in Section 3.2.6 of the lecture notes. Solve the Volterra-Lotka system as explained there.
- Use the help function of Mathematica to get information about the functions used.
- Solve the 2-body problem with Mathematica. Do this by solving the differential equations for the vector components in 2 dimensions and plot the resulting objects (the orbits).

2 Population dynamics (homework)

In this exercise we study the following equation for population dynamics from the lecture:

$$\frac{dN}{dt} = rN(1 - N/K) - \frac{BN^2}{A^2 + N^2}$$
 (1)

where all parameters r, K, A and B are positive.

- 1. (6 pt) Dimensional analysis: Determine the dimension of the parameters and rewrite the equation in dimensionless form. Note that there are different possibilities. Please formulate a dimensionless time τ that is *not* defined on the basis of r. Use n = N/A as the dimensionless version of N.
- 2. (7 pt) Determine the stationary points n^* for K/A = 7. Note that for $n^* \neq 0$ these values are solutions of a cubic equation, which you can obtain using e.g. Mathematica. When do one or three real solutions exist?
- 3. (7 pt) Choose q := K/A = 7 and plot $dn/d\tau$ as a function of n for three values of the remaining free parameter. Choose values for which there are (including $n^* = 0$) two or four stationary points. Are these stationary points stable?