NBODY6++ Manual for the Computer Code

Emil Khalisi, Rainer Spurzem

Astronomisches Rechen–Institut Mönchhofstr. 12–14, 69120 Heidelberg, Germany

Version 4.1 Latest update: 11. Oktober 2014

Table of contents

1	Introduction	4
2	Code versions	6
3	Getting started	7
4	Input variables	11
5	Thresholds for the variables	22
6	How to read the diagnostics	23
7	Runs on parallel machines	28
8	The Hermite integration method	29
9	Individual and block time steps	31
10	The Ahmad–Cohen scheme	33
11	KS–Regularization	36
12	Nbody–units	38
13	Output	39
14	Python and IDL scripts	53
15	AMUSE	53
Refe	rences	56

1 Introduction

Gravity is an ever–present force in the Universe and is involved into the dynamics of all kinds of bodies, from the tiny atom to the clusters of galaxies. At small spatial scales, its influence is covered by other strong forces (e.g. magnetic, pressure, radiation induced), while on the very large scale it becomes the most dominant power. In astrophysics, it governs the dynamical evolution of many self–gravitating systems. Here, we concentrate on such systems that are dominated by mutual gravitation between particles.

The numerical star-by-star simulation of a simple cluster containing some more than hundred thousand members still places heavy demands on the available hard- and software. A balance has to be found between two constraints: On one hand the *realism*, i.e. the input of profound physics, inclusion of all astrophysical effects as well as the maintenance of the accuracy of calculations; and on the other hand, the *efficiency*, i.e. the limitations given by the computational possibilities and suitable codes to be finished in a reasonable time. Many different kinds of approaches have been undertaken to suffice both:

- codes based on the direct force integration [2], [5], [6], see also: http://www.sverre.com/,
- statistical models, which themselves divide into several subgroups (Fokker–Planck approximation by [10]; Monte–Carlo method by [13]; Gas models by [27]),
- usage of high-performance parallel computers [28], [11],
- or the construction of special hardware devoted for these purposes (GRAPE [19], see also: http://www.astrogrape.org/ and http://www.cs.rit.edu/~grapecluster/.

The code NBODY6++ described in this manual is designed for an accurate integration of many bodies (e.g. in a star cluster, planetary system, galactic nucleus) based on the direct integration of the Newtonian equations of motion. It is optimal for collisional systems, where long times of integration and high accuracy or both are required, in order to follow with high precision the secular evolution of the objects.

NBODY6++ is a descendant of the family of NBODY codes initiated by Sverre Aarseth [4], which has been extended to be suitable for parallel computers [28]. The basic features of the code increasing the efficiency may be considered under four separate headings: fourth order prediction–correction method (Hermite scheme), individual and block time–steps, regularization of close encounters and few-body subsystems, and a neighbour scheme (Ahmad–Cohen scheme). We briefly describe these ideas in this booklet, while a detailed description can be found in [3] as well as his book [6].

While NBODY6++ is not that different from NBODY6 to justify a completely new name, the user should, however, be aware that in order to make a parallelization of regular and irregular force computations possible at all, some significant changes in the order of operations became necessary. As a consequence, trajectories of the same initial system, simulated by NBODY6 and NBODY6++ will diverge from each other, due to the inherent exponential instability and deterministic chaos in *N*-body systems. Still one should always expect that the *global* properties are well behaved in both cases (e.g. energy conservation). While much effort is taken to keep NBODY6 and NBODY6++ as close as possible this is never 100% the case, and the interested should always contact Sverre Aarseth or Rainer Spurzem if in doubt about these matters.

This manual should serve as a practical starter kit for new students working with NBODY6++. It is not meant as a complete reference or scientific paper; for that see the references and in particular the excellent compendium of Aarseth's book on Gravitational *N*-Body Simulations [6].

Acknowledgements

The authors of this manual would like to express their sincere gratitude to Sverre Aarseth and Seppo Mikkola, for their continuous support and work over the decades. Also, many students and postdocs in Heidelberg and elsewhere have contributed towards development, debugging and improving the software for the benefit of the community. This booklet was written at the Astronomisches Rechen–Institut Heidelberg under the supervision of Rainer Spurzem.

2 Code versions

The development of the NBODY code has begun in the 1960s [1], though there exist some earlier precursors [29], [30]. It has set a quasi-standard for the precise direct integration of gravitating many-body systems. There exist several code groups (NBODY0–7, and a number of special implementations) for different usage, some of which are rather of historical interest.

The NBODY6++ code is available publicly under

ftp://ftp.ari.uni-heidelberg.de/pub/staff/spurzem/nb6mpi/.

In irregular intervals updates of the code are provided on this ftp-site. For those, who keep synchronicity with NBODY6++, upgrades and bugfixes are explained and there is usually a special README file detailing the changes.

The original *N*-body codes can be accessed publicly via Sverre Aarseth's ftp and web sites at ftp://ftp.ast.cam.ac.uk/pub/sverre/ and http://www.sverre.com/.

A brief comparison of the code versions:

ITS: Individual time-steps

ACS: Neighbour scheme (Ahmad–Cohen scheme) with block time-steps

KS: KS-regularization of few-body subsystems

HITS: Hermite scheme integration method combined with hierarchical block time steps

PN: Post-Newtonian terms

AR: Algorithmic regularization

	ITS	ACS	KS	HITS	PN	AR
NBODY1	\checkmark					
NBODY2		\checkmark		\checkmark		
NBODY3	\checkmark		\checkmark			
NBODY4			\checkmark	\checkmark		
NBODY5	\checkmark	\checkmark	\checkmark			
NBODY6		\checkmark	\checkmark	\checkmark		
NBODY7		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

3 Getting started

The code NBODY6++ is written in Fortran and consists of about 300 files. Their functionality was improved as well as new routines included all the way through the decades along with the technological achievements of the hardware. The starting (main) routine is called nbody6.F and begins as given in Figure 3.1. We will return to the very first operations of this routine later.

To get the code running, you need to download and unpack the package nb6mpi-version.tar.gz :

```
user@localhost:~> gzip -d -c nb6mpi-version.tar.gz | tar xvf -
A directory will be created containing all the source files (routines and functions). By default the
directory is called nb6mpi-version /, and it can be renamed to any other name; for example, we
will change it to Nbody for convenience.
```

Most of the files have the suffix .f, .F, .cu or .h. All .f files are directly read by a Fortran compiler. The .F files will pass preprocessor first, which selects code lines separated by preprocessor options, e.g. between #ifdef PARALLEL and #endif, for they activate the parallel code on different multiprocessor machines. By this, some portability between different hardware is ensured at least, and a single processor version of the code can easily be compiled as well. The .h are header files and declare the variables and their blocks.

The files have to be compiled on the computer you are working at. There are several options for compilation, and their usage is explained in the Makefile. For example:

```
user@localhost:~> cd Nbody
user@localhost:~> make mpichgpu
```

will apply the standard Fortran compiler on your hardware. Other targets are also specified for different hardware such as PC clusters, CRAY T3E or Sun parallel machines. Compilations like make pgf or make pgfp4 make use of commercial Fortran compilers and special optimisation for individual processors. More of them can be created by the user or provided by the authors on request. The compilation creates machine–readable object files with the suffix .o. The files are linked to a resulting executable with the name nbody6. Now, the code is ready to start.

It is recommendable to start the simulations in another folder, e.g. Run/ and copy the executable therein. While unpacking, this folder is created by default and some trial files are delivered. Copy the newly compiled executable to this directory:

```
homedir/Nbody> cd Run
homedir/Nbody/Run> cp ../nbody6 .
```

Depending on the user's individual research, the Nbody code opens a wide field of application possibilities. The user has to define his model by a number of input control variables, e.g. number of stars, the size of the cluster, a mass function, profile, and many more. These control variables are gathered in the file input1000. The detailed explanation of its handling is given in Chapter 4. Alternatively, a data file named dat.10 can be used, which contains data for an initial configuration (see Ch. ??). If the model criteria are defined, a single processor simulation run is started with the command

```
homedir/Nbody/Run> ./nbody6 < input1000 > out1000 &
```

In this example, the code reads the control variables given in the file input1000 from Unix

```
PROGRAM NBODY6
*
             N B O D Y 6++
             *******
       Regularized AC N-body code with triple & binary collisions.
        _____
       Hermite integration scheme with block-steps (V 4.0.0 April/99).
       Developed by Sverre Aarseth, IOA, Cambridge.
       Message Passing Version NBODY6++ for Massively Parallel Systems
       Developed by Rainer Spurzem, ARI, Heidelberg
     INCLUDE 'common6.h'
     COMMON/STSTAT/ TINIT,NIR,NIB,NRGL,NKS
     EXTERNAL MERGE
#ifdef PARALLEL
#define MPIINIT 1
#else
#ifdef ENSEMBLE
#define MPIINIT 1
#else
#define MPIINIT 0
#endif
#endif
#if MPIINIT
      Initialize MPI
     CALL MPI_INIT(ierr)
     CALL MPI_COMM_GROUP(MPI_COMM_WORLD,group,ierr)
     CALL MPI_GROUP_SIZE(group, isize, ierr)
     CALL MPI_GROUP_RANK(group,rank,ierr)
*
     PRINT*,' This is rank=',rank,' size=',isize,' group=',group
#endif
*
       Initialize the timer.
     CALL CPUTIM(ttota)
*
       Read start/restart indicator & CPU time.
     IF(rank.eq.0)READ (5,*) KSTART, TCOMP, TCRITP,
         isernb,iserreg
#if MPIINIT
     CALL MPI_BCAST(isernb,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
     CALL MPI_BCAST(iserreg,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
     CALL MPI BCAST(KSTART,1,MPI INTEGER,0,MPI COMM WORLD,ierr)
     CALL MPI_BCAST(TCOMP,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)
     CALL MPI_BCAST(TCRITp,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)
+
     iserreg = max(isize,iserreg)
     isernb = max(isize,isernb)
     IF(rank.eq.0)PRINT*,' iserreg,isernb=',iserreg,isernb
#endif
     IF (KSTART.EQ.1) THEN
*
       Read input parameters, perform initial setup and obtain output.
```

Figure 3.1: The beginning of the Nbody6–code.

standard input *stdin*. Then, a star cluster is created according to the user's instructions, and the bodies are moved one by one with respect to their time maturity. In NBODY6 they are due one by one in individual steps (which might be blocked together in groups, though), in NBODY6++ they are moved simultaneously forward in a group (see Chapter ??). In certain time intervals (controlled by the user), some first results and error checks are directed via the Unix standard output *stdout* to out1000. This file provides snapshots of the state of the system for a brief overview of some key data of the simulation to judge about the quality and performance of the run.

There are several more files created, many of them binary files. Most important are comm.1 and comm.2, which contain dumps of the complete common blocks for a restart and checkpoint purposes, and conf.3 that contains the particle data for the user's analysis. In the latter, many details of the run are saved, e.g. positions, velocities, neighbour densities, potential of *each* particle in *any* predefined time interval. The volume of data in all three mentioned files critically depends on the dimensions of vectors in params.h. Here, the particle data plus some user-defined dimensions are given a threshold in order to save disk space when outputting to conf.3 — see Chapter 5.

At the time of this writing, the user has to provide own routines to postprocess the particle data from the simulation, using e.g. additional routines or programs (like IDL, gnuplot etc.), in order to extract the binary data from this file and plot graphics. Work is in progress to provide a better visual interface delivered with the program.

A run will be finished when one of 4 conditions becomes true:

- the specified CPU-time on the computer is exceeded (variable TCOMP in the input file), or
- the maximum Nbody-time (see Ch. 4) is reached (variable TCRIT), or
- the physical cluster time in Myr is reached (variable TCRITp), or
- the number of cluster stars has fallen below a minimum (variable NCRIT).

A soft termination of a running simulation can be realized by generating of a file STOP in the executing directory:

homedir/Nbody/Run> touch STOP

In that case, a checkpoint of the code is done, which is located in the routine intgr. F and shown in Figure 3.2. The program writes out the current variables, saves a complete common dump in

```
Include facility for termination of run (create dummy file STOP).
IF(rank.EQ.0)THEH
OPEH (99,FILE='STOP',STATUS='OLD',FORM='FORMATTED',IOSTAT=IO)
IF (IO.EQ.0) THEH
CLOSE (99)
IF (HSUM.EQ.0.and.rank.eq.0) WRITE (6,90)
90 FORMAT (/,9X,'TERMINATION BY MANUAL INTERVENTION')
CPU = 0.0
END IF
END IF
```

Figure 3.2: Soft interruption of a simulation run in intgr.F: If the dummy file "STOP" exists, then the run terminates.

comm.1 and terminates. The run can be restarted and continued from the same point where it was left.

Before a restart, it is recommendable to copy or rename the files, otherwise they may be overwritten. Any file comm.1 and comm.2 is restartable. The different names are just for getting common dumps at different time units. For example, if an irregular termination takes place, comm.2 contains the data at some earlier time point, while comm.1 always contains the last time data.

To restart a run, a different very short input control data file needs to be used, because most of the control data are already stored in comm.1. Only the first line corresponds to the standard input file, but the first input variable, KSTART, has to be changed to "2" or higher. In this case, the routine modify.F will be entered.

KSTART	Function
1	new run, start from initial values given in data.F
2	continuation of a run without changes
3	restart of a run with changes of the following parameters given in
	the second line of a newly created input file:
	DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, J, K
	where the options KZ can be changed via KZ(J)=K
4	restart of a run with following parameters changed in the second
	line: ETAI, ETAR, ETAU, DTMIN, RMIN, NNBOPT
5	restart of a run with all parameter changes in the run control index
	3 and 4. The changes must succeed the first line.

"0" values in the fields are interpreted as: Do not change the value of this parameter. Example: A new input file

3	10000	1.E6	40	40			
0	2.0	0	0	2000	2.0E-06	30	0

will change the values of DELTAT=2.0, TCRIT=2000, $QE=2\cdot10^{-6}$, and KZ(30)=0. Note: It is only possible to change one of the KZ-vector values at a restart.

4 Input variables

The input control file of NBODY6++ (see below), contains a minimum of 83 parameters which steer one simulation run for its technical and physical properties (it is very similar but not identical to the one used for NBODY6). As for the technical aspect, the file supervises the run e.g. for its duration, intervals of the output, or error check; the physical parameters concern the size of a cluster, initial conditions, or a number of optional features related to the numerical problem to be studied. The handling of this input file appears rather entangled at first sight, for it has grown rather historically and "ready–for–use" than customer–oriented. Thus, the input variables are read by different routines (functions) in the code, and the nature of the parameters are woven with each other in some cases. Also, some parameters require additional input, such that the total number of lines and parameters may vary.

In the following, we explain the main input file and give an example of typical values for a simulation of an isolated globular cluster. Then, we proceed to the thresholds.

nbody6.F	KSTART	TCOMP	TCRITp	isernb	iserreg	iserks				
input.F	N	NFIX	NCRIT	NRAND	NNBOPT	NRUN				
	ETAI	ETAR	RSO	DTADJ	DELTAT	TCRIT	QE	RBAR	ZMBAR	
	KZ(1)	KZ(2)	KZ(3)	KZ(4)	KZ(5)	KZ(6)	KZ(7)	KZ(8)	KZ(9)	KZ(10)
	KZ(11)	KZ(12)	KZ(13)	KZ(14)	KZ(15)	KZ(16)	KZ(17)	KZ(18)	KZ(19)	KZ(20)
	KZ(21)	KZ(22)	KZ(23)	KZ(24)	KZ(25)	KZ(26)	KZ(27)	KZ(28)	KZ(29)	KZ(30)
	KZ(31)	KZ(32)	KZ(33)	KZ(34)	KZ(35)	KZ(36)	KZ(37)	KZ(38)	KZ(39)	KZ(40)
	KZ(41)	KZ(42)	KZ(43)	KZ(44)	KZ(45)	KZ(46)	KZ(47)	KZ(48)	KZ(49)	KZ(50)
	DTMIN	RMIN	ETAU	ECLOSE	GMIN	GMAX	SMAX			
data.F	ALPHA	BODY1	BODYN	NBINO	NHIO	ZMET	EPO CHO	DTPLOT		
setup.F	APO	ECC	N2	SCALE						(KZ(5)=2)
	APO	ECC	SCALE							(KZ(5)=3)
	APO	ECC	SCALE							(KZ(5)=3)
	SEMI	ECC	M1	M2						(KZ(5)=4)
	ZMH	RCUT							(KZ(5) =	6&&KZ(24)<0)
scale.F	Q	V XRO T	VZROT	RTIDE						
xtrn10.F	GMG	RGO								(KZ(14)=2)
	GMG	DISK	Α	В	VCIRC	RCIRC	RG	VG		(KZ(14)=3)
	MP	AP	MPDOT	TDEL AY					(KZ(14)	=3 KZ(14)=4)
binpop.F	SEMI	ECC	RATIO	RANGE	NSKIP	IDORM			(KZ(8)=	1 KZ(8)>4)
hipop.F	SEMI	ECC	RATIO	RANGE					(KZ(8)>	0&&KZ(18)>1)
imbhinit.F	MMBH	XBH(1)	XBH(2)	XBH(3)	VBH(1)	VBH(2)	VBH(3)	DTBH		(KZ(24)=1)
cloud0.F	NCL	RB2	VCL	SIGMA	CLM	RCL2				(KZ(13)>0)

Input with all options:

nbody6.F:

KSTART	Run control index
	=1: new run (construct new model or read from dat.10)
	=2: restart/continuation of a run, needs fort.1
	=3: restart + changes of DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, J, KZ(J)
	=4: restart + changes of ETAI, ETAR, ETAU, DTMIN, RMIN, NCRIT, NNBOPT,
	SMAX
	=5: restart containing the combination of the control index 3 and 4
TCOMP	Maximum wall-clock time in seconds (parallel runs: wall clock)
TCRITP	Termination time in Myrs
isernb	For MPI parallel runs: only irregular block sizes larger than this value are executed
	in parallel mode (dummy variable for single CPU)
iserreg	For MPI parallel runs: only regular block sizes larger than this value are executed in
C C	parallel mode (dummy variable for single CPU)

iserks	For MPI parallel runs: only ks block sizes larger than this value are executed in par-
	allel mode (dummy variable for single CPU)

input.F:							
N	Total number of particles (single + c.m.s. of binaries; singles + $3 \times c.m.s.$ of binaries $< NMAX-2$)						
NFIX	Multiplicator for output interval of data on $conf$. 3 and of data for binary stars (output each DELTAT × NFIX time steps; compare KZ(3) and KZ(6))						
NCRIT	Minimum particle number (alternative termination criterion)						
NRAND	Random number seed; any positive integer						
NNBOPT	Desired optimal neighbour number (< LMAX-5)						
NRUN	Run identification index						
ETAI	Time-step factor for irregular force polynomial						
ETAR	Time-step factor for regular force polynomial						
RS0	Initial guess for all radii of neighbour spheres (N-body units)						
DTADJ	Time interval for parameter adjustment and energy check (<i>N</i> -body units)						
DELTAT	Time interval for writing output data and diagnostics, multiplied by NFIX (<i>N</i> –body units)						
TCRIT	Termination time in units (<i>N</i> -body units)						
QE	Energy tolerance:						
	– immediate termination if $DE/E > 5*QE \& KZ(2) \le 1$;						
	– restart if $DE/E > 5*QE \& KZ(2) > 1$ and termination after second restart attempt.						
RBAR	Scaling unit in pc for radial (<i>N</i> -body units)						
ZMBAR	Scaling unit for average particle mass in solar masses						
	(in scale-free simulations RBAR and ZMBAR can be set to zero; depends on KZ(20))						
KZ(1)	Save COMMON to file fort.1						
	= 1: at end of run or when dummy file STOP is created						
	= 2: every 100*NMAX steps						
KZ(2)	Save COMMON to file fort.2						
	= 1: save at output time						
	= 2: save at output time and restart simulation if energy error $DE/E > 5*QE$						
KZ(3)	Save basic data to file conf.3 at output time (unformatted)						
KZ(4)	(Suppressed) Binary diagnostics on bdat.4 (# = threshold levels <10)						
KZ(5)	Initial conditions of the particle distribution, need $KZ(22)=0$						
	= 0: uniform & isotropic sphere						
	= 1: Plummer random placing						
	= 2: two Plummer models in orbit (extra input)						
	= 3: massive perturber and planetesimal disk (each pariticle has circular orbit, con-						
	stant separation along radial direction between each neighbors and random phase)						
	(extra input)						
	= 4: massive initial binary (extra input)						
	= 5: Jatte model (extra input)						
	\geq 6: Zhao BH cusp model (extra input if KZ(24)<0)						
KZ(6)	Output of significant and regularized binaries at main output (bodies.f)						

	= 1: output of regularized and significant binaries ($ E $ >0.1 ECLOSE)
	= 2: output of regularized binaries only
	= 3: output significant binaries at output time and regularized binaries with time interval DELTAT
	= 4: output of regularized binaries only at output time
KZ(7)	Determine Lagrangian radii and average mass, particle counters, average velocity,
	velocity dispersion, rotational velocity within Lagrangian radii (lagr.f)
	= 1: Get actual value of half mass radius RSCALE by using current total mass
	> 2: Output data at main output and lagr.7
	\geq 6: Output Lagrangian radii for two mass groups at lagr.31 and lagr.32
	(lagr2.f; based on KZ(5)=1,2; slowly: O(N2))
	—- methods:
	= 2,4: Lagrangian radii calculated by initial total mass
	$=3, \geq 5$: Lagrangian radii calculated by current total mass (The single/K.S-binary
	Lagrangian radii are still calculated by initial single/binary total mass)
	= 2,3: All parameters are averaged within the shell between each two Lagrangian
	radii neighbors
	\geq 4: All parameters are averaged from center to each Lagrangian radius
KZ(8)	Primordial binaries initialization and output (binpop.f)
	—- Initialization:
	= 0: No primordial binaries
	$= 1, \geq 3$: generate primordial binaries based on KZ(41) and KZ(42) (binpop.F)
	= 2: Input primordial binaries from first $2 \times NBIN0$ lines of dat. 10
	—- Output:
	> 0: Save information of primordial binary that change member in pbin.18; binary
	diagnostics at main output (binout.f)
	\geq 2: Output K.S. binary in bdat.9, soft binary in bwdat.19
KZ(9)	Binary diagnostics
	= 1,3: Output diagnostics for the hardest binary below ECLOSE in hbin.39
	(adjust.f)
	\geq 2: Output binary evolution stages in binev. 17 (binev.f)
	\geq 3: Output binary with degenerate stars in degen. 4 (degen. f)
KZ(10)	K.S. regularization diagnostics at main output
	> 0: Output new K.S. information
	> 1: Output end K.S. information
V7(11)	\geq 5: Output each integrating step information
KZ(11)	(Suppressed)
$\mathbf{KL}(12)$	rk diagnostics of evolving stars with output time interval DTPLOT in SSE.83 (sin-
V7(12)	Interstaller clouds
$\mathbf{KZ}(13)$	-1: constant velocity
	> 2: Gaussian velocity
K7 (14)	External tidal force
$\mathbf{KL}(14)$	-1: standard solar neighbor tidal field
	= 1. standard solar heightor idea heid = 2: point-mass galaxy with circular orbit (extra input)
	= 2. point-mass galaxy with circular of on (extra input) = 3. point-mass + disk + halo + Plummer (extra input)
	= 4· Plummer model (extra input)
KZ(15)	Triple quad chain and merger search
····(15)	

	\geq 1: Switch on triple, quad, chain (KZ(30)>0) and merger search (impact.f)
	\geq 2: Diagnostics at main output at begin and end of triple, quad
	\geq 3: Save first five outer orbits every half period of wide quadruple before merger
	and stable quadruples that accepted for merger in quastab.89
KZ(16)	Auto-adjustment of regularization parameters
	\geq 1: Adjust RMIN, DTMIN & ECLOSE every DTADJ time
	\geq 3: modify RMIN for GPERT > 0.05 or < 0.002 in chain, output diagnostics at
	kscrit.77
KZ(17)	Auto-adjustment of ETAI, ETAR and ETAU by tolerance QE every DTADJ time
	(CHECK.I)
	≥ 1 . Adjust ETAL
K7 (18)	<u>Hierarchical systems</u>
KZ (10)	= 1.3: diagnostics (hiarch f)
	> 2: Initialize primordial stable triples number is NHI0 (hipop F)
	\geq 2. Initialize principal scale triples, number is find (https://
KZ(19)	Stellar evolution mass loss
	= 1, 2: supernova scheme
	> 3: Eggleton, Tout & Hurley
	\geq 5: extra diagnostics (mdot.F)
	= 2,4: Input stellar parameters from fort.21 (instar.f)
	N lines of (MI, KW, M0, EPOCH1, OSPIN)
	MI: Current mass
	KW: Kstar type
	M0: Initial mass
	EPOCH1: evolved age of star (Age = $TIME[Myr] - EPOCH1$)
	OSPIN: angular velocity of star
KZ(20)	Initial mass functions, need $KZ(22) - 0$ or 9:
	= 0: self-defined power-law mass function using ALPHAS (data.F)
	= 1: Miller-Scalo-(1979) IMF (imf.f)
	= 2,4: KTG (1993) IMF (imf2.f)
	= 3,5: Eggleton-IMF (imf2.f)
	= 6, 7: Kroupa(2001) (imf2.f), extended to Brown Dwarf regime (imfbd.f)
	Primordial binary mass
	= 2,6: random pairing $(1mf2.1)$
	= 5,4,5,7: binary mass ratio corrected by $(m_1/m_2)^{r} = (m_1/m_2)^{rrr}$ + constant (Eg-
K7(21)	Extra diagnostics information at main output every DELTAT interval (output, E)
$\mathbf{KL}(21)$	> 1: output NRUN MODEL TCOMP TRC DMIN AMIN RMAX RSMIN NEEF
	\geq 1. output theory, wobled, reconner, rice, binny, right, righ
	≤ 2 . Runnoer of escapers (RESC at main output will be counted by succer escape criterion (slowly algorithm: $O(N^2)$, jacobi f)
KZ(22)	Initialization of basic particle data mass, position and velocity (data, F)
()	— Initialization with internal method
	= 0.1: Initial position, velocity based on KZ(5), initial mass based on KZ(20)
	= 1: write initial conditions in dat. 10 (scale.F)
	Initialization by reading data from dat.10
	= 2: input through NBODY-format (7 parameters each line: mass, $position(1:3)$, ve-
	locity(1:3))

	= 3: input through Tree-format (data.F)
	= 4: input through Starlab-format
	= 6: input through NBODY-format and do scaling
	= 7: input through Tree-Format and do scaling
	= 8: input through Starlab-format and do Scaling
	= 9: input through NBODY-format but ignore mass (first column) and use IMF based
	on KZ(20), then do scaling
KZ(23)	Removal of escapers (escape.F)
	\geq 1: remove escapers and ghost particles generated by two star coalescence (collisi-
	on)
	=2,4: write escaper diagnostics in esc 11
	\geq 3: initialization & integration of tidal tail
KZ(24)	Initial conditions for subsystems
	< 0: ZMH & RCUT (N-body units) Zhao model (Need KZ(5) \geq 6, setup . F)
	= 1: Add one massive black hole (extra input: mass, position, velocity and output
	frequency), will output black hole data in mbh. 45 and its neighbor data in mbhnb. 46
KZ(25)	Velocity kicks for white dwarfs kick.F
	= 1: Type 10 Helium white dwarf & 11 Carbon-Oxygen white dwarf
	= 2: All WDs (type 10, 11 and type 12 Oxygen-Neon white dwarf)
KZ(26)	Slow-down of two-body motion, increase the regularization integration efficiency
	\geq 1: Apply to KS binary
	\geq 2: Apply to chain
	= 3: Rectify to get better energy conservation
KZ(27)	Two-body tidal circularization (Mardling & Aarseth, 2001; Portegies Zwart et al.
	1997)
	(Please suppress in KS parallel version)
	= 1: sequential
	= 2: chaos
	= 3: GR energy loss
	= -1: Only detect collision and suppress coalescence
KZ(28)	Magnetic braking and gravitational radiation for NS or BH binaries (Need KZ(19)=3
	and based on $KZ(27)$)
	\geq 1: GR coalescence for NS & BH (brake.f, brake3.f)
	≥ 2 : Diagnostics at main output (brake f)
	= 3: Input of $ZMH = 1/SQR1(2^N)$ (Need $KZ(5) \ge 6$) (setup . F)
V7(20)	= 4: Set every star as type 13 Neutron star (Need KZ(27)=3) (instar.1)
KZ(29)	(Suppressed) Boundary reflection for not system
KZ(30)	
	= -1. Use chain only = 0: No triple guad and chain regularization only margar
	= 0. No unple, quad and chain regularization, only merger = 1: Use triple guad and chain (impact f)
	= 1. Use inple, quad and chain (impact.1) > 2: Diagnostics at begin/end of chain at main output
	\geq 2. Diagnostics at begin end of chain at main output \geq 3. Diagnostics at each step of chain at main output
KZ(31)	\geq 5. Diagnostics at each step of chain at main output Centre of mass correction after energy check (cmcorr f)
KZ(32)	Adjustment (increase) of adjust interval DTADL output interval DFLTAT and energy
····(34)	error criterion OE based on single particle energy (check f)
KZ(33)	Block-step statistics at main output (diagnostics)
(00)	> 1: Output irregular block step; and K.S. binary step if KZ(8)>0
KZ(32) KZ(33)	Adjustment (increase) of adjust interval DTADJ, output interval DELTAT and energy error criterion QE based on single particle energy (check.f) Block-step statistics at main output (diagnostics) ≥ 1 : Output irregular block step: and K S binary step if KZ(8)>0

	\geq 2: Output regular block step
KZ(34)	Roche-lobe overflow
~ /	= 1: Roche & Spin synchronisation on binary with circular orbit (synch.f)
	= 2: Roche & Tidal synchronisation on binary with circular orbit by BSE method
	(bsetid.f)
KZ(35)	TIME reset to zero every 100 time units, total time is $TTOT = TIME + TOFF$
()	(adjust F)
KZ(36)	(Suppressed) Step reduction for hierarchical systems
KZ(37)	Neighbour list additions (check] F)
$\mathbf{RL}(37)$	> 1: Add high-velocity particles into neighbor list
	≥ 2 : Add small time step particle (like close encounter particles near neighbor radius)
	into neighbor list
K7(38)	Force polynomial corrections during regular block step calculation
KZ (30)	-0: standard no corrections
	= 0. standard, no contections = 1: all gains & losses included
	- 2: small regular force change skipped
	- 2: fast neighbour loss only
K7(30)	- 5. Tast heighbour toss only Naighbor radius adjustment method
$\mathbf{KL}(39)$	-0: The system have unique density centre and smooth density profile
	= 0. The system have no unique density centre and smooth density profile = 1 > 3. The system have no unique density centre or smooth density profile
	$=1, \geq 5$. The system have no unique density centre of smooth density prome will skips velocity modification of RS(I) (regint f regcor gpu f)
	will not reduce neighbor redius if particle is outside half mass redius
	(For CPU) reduce PS(I) by multiply 0.0 instead of actimation of PS(I) based on
	NNPOPT/NNP when GPU overflow happened (fpc]v() E util gpu E)
	- 2 3: (For CPU) Consider sart(particle mass / average mass) as the factor to deter
	= 2, 5. (For GFO) Consider squ(particle mass/ average mass) as the factor to deter-
V7(40)	(Suppressed)
KZ(40)	(Suppressed)
KZ (41)	(prote ster evolution of eccentricity and period for printordial binaries initialization
V7(42)	(proco_scar_evor, binpop.r)
KZ (42)	De DANCE (), uniform distribution in log(somi) between SEMIO and SE
	= 0: KANGE>0: uniform distribution in log(semi) between SEMIO and SE-
	MIU/KANGE DANCE (0, uniform distribution in comi between SEMIO and 1*DANCE
	RANGE<0: uniform distribution in semi between SEIMIO and -1*KANGE.
	= 1: Intearry increasing distribution function $f = 0.03438 * logP$ 2: $f = 2.5 logP / [100 + (logP) + 2]$
	$= 2: \int = 5.5log P / [100 + (log P) * *2]$ $= 2: \int = 2.2(l_{12} P - 1) / [45 + (l_{12} P - 1) + 2] \cdot This is a "2nd" iteration when one may$
	= 5: $f = 2.5(log P - 1)/[45 + (log P - 1)**2]$; This is a 3rd inertation when pre-ms
	evolution is taken into account with $KZ(41)=1$
	= 4: $f = 2.5(logP - 1)/[45 + (logP - 1)**2]$; This is a "34th" iteration when pre-ms
	evolution is taken into account with $KZ(41)=1$ and $RBAR<1.5$
	= 5: Duquennoy & Mayor 1991, Gaussian distribution with mean $\log P = 4.8$, SDEV
	in $\log P = 2.3$. Use Num.Recipes routine gasdev. \pm to obtain random deviates given "idum1"
	= 6: eigen-evolution (Pavel Kroupa & Rosemary Mardling)
KZ(43)	(Unused)
KZ(44)	(Unused)
KZ(45)	(Unused)
KZ(46)	HDF5/CSV format output (name,time,x,v,m,f,fdot,kstar,rho,phi,L,radius,Teff,mcore,radiuscore)

= 1,3: HDF5 format

	= 2,4: CSV format = 1,2: Only output active stars with time interval defined by KZ(47) = 3.4: Output full particle list with time interval defined by KZ(47)
KZ(46)	(Unused)
KZ(47)	Frequency for KZ(46) output
	= 0: Output data during each irregular block time step
	$= 1 \sim 63$: Output data with time interval $0.5^{KZ(47)}$
KZ(48)	(Unused)
KZ(49)	Computation of Moments of Inertia (with Chr. Theis) in fort.60 (ellan.f)
KZ(50)	(Unused)
DTMIN	Time-step criterion for regularization search
RMIN	Distance criterion for regularization search
ETAU	Regularized time-step parameter (6.28/ETAU steps/orbit)
ECLOSE	Binding energy per unit mass for hard binary (positive)
GMIN	Relative two-body perturbation for unperturbed motion
GMAX	Secondary termination parameter for soft KS binaries
SMAX	Maximum time-step (factor of 2 commensurate with 1.0)

data.F:

aaba.r.	
ALPHA	Power-law index for initial mass function, routine data.F
BODY1	Maximum particle mass before scaling (based on KZ(20); solar mass unit)
BODYN	Minimum particle mass before scaling
NBIN0	Number of primordial binaries (need KZ(8)>0)
	- by routine $imf2$. F using a binary IMF (KZ(20) \geq 2)
	- by routine binpop. F splitting single stars (KZ(8)>0)
	- by reading subsystems from dat.10 (KZ(22) \geq 2)
ZMET	Metal abundance (in range 0.03 - 0.0001)
EPOCH0	Evolutionary epoch (in 10 ⁶ yrs)
DTPLOT	Plotting interval for stellar evolution HRDIAG (N-body units; \geq DELTAT)

setup.F:	if (kz(5)=2)
APO	Separation of two Plummer models in Nbody Unit (SEMI = $APO/(1 + ECC)$). (Notice
	SEMI will be limited between 2.0 to 50.0)
ECC	Eccentricity of two-body orbit (ECC ≥ 0 and ECC < 0.999)
N2	Membership of second Plummer model (N2 \leq N)
SCALE	Scale factor for the second Plummer model, second cluster will be generated by first
	Plummer model with $X \times SCALE$ and $V \times \sqrt{SCALE} (\geq 0.2$ for limiting minimum
	size)
	if (kz(5)=3)
APO	Separation between the perturber and Sun in N-body Unit
ECC	Eccentricity of orbit (=1 for parabolic encounter)
SCALE	Perturber mass scale factor, perturmer mass = Center star mass \times SCALE (=1 for
	Msun)
	if (kz(5)=4)

SEMI	Semi-major axis (slightly modified; ignore if $ECC > 1$)
ECC	Eccentricity (ECC > 1: NAME = 1 & 2 free-floating)
M1	Mass of first member (in units of mean mass)
M2	Mass of second member (rescaled total mass $= 1$)
	if $(kz(5) \ge 6)$ and $(kz(24) < 0)$
ZMH	Mass of single BH (in N-body units)
RCUT	Radial cutoff in Zhao cusp distribution (MNRAS, 278, 488)

scale.F:

Q	Virial ratio (routine scale.F; Q=0.5 for equilibrium)
VXROT	XY–velocity scaling factor (> 0 for solid-body rotation)
VZROT	Z-velocity scaling factor (not used if $VXROT = 0$)
RSPH2	Radius of reflecting sphere (see KZ(29); units of RSCALE)

xtrnl0.F: if (kz(14)=2)

GMG	Point-mass galaxy (solar masses, linearized circular orbit)
RG0	Central distance (in kpc)
	if (kz(14)=3)
GMG	Point-mass galaxy (solar masses)
DISK	Mass of Miyamoto disk (solar masses)
А	Softening length in Miyamoto potential (in kpc)
В	Vertical softening length (kpc)
VCIRC	Galactic circular velocity (km/sec) at RCIRC (=0: no halo)
RCIRC	Central distance for VCIRC with logarithmic potential (kpc)
RG	Initial position; DISK+VCIRC=0, VG(3)=0: A(1+E)=RG(1), E=RG(2)
VG	Initial cluster velocity vector (km/sec)
	if (kz(14)=3,4)
MP	Total mass of Plummer sphere (in scaled units)
AP	Plummer scale factor (N-body units; square saved in AP2)
MPDOT	Decay time for gas expulsion (MP = $MPO/(1 + MPDOT^{*}(T-TD))$)
TDELAY	Delay time for starting gas expulsion (T > TDELAY)

binpop.F: if (kz(8)=1 or kz(8)>2)

SEMI	Initial semi-major axis limit
ECC	Initial eccentricity
	< 0: thermal distribution, $f(e) = 2e$
	≥ 0 and ≤ 1 : fixed value of eccentricity
	= 20: uniform distribution
	= 30: distribution with $f(e) = 0.1765/(e^2)$
	= 40: general $f(e) = a * e^b$, $e^0 <= e^{-1}$ with $a = (1+b)/(1-e^0(1+b))$, current
	values: $e0 = 0$ and $b = 1$ (thermal distribution)
RATIO	Binary mass ratio $M1/(M1+M2)$
	$= 1.0: M1 = M2 = \langle M \rangle$
RANGE	42 = 0: semi-major axis range for uniform logarithmic distribution
	42 = 6: Minimum period of binary in unit of day

	not used in other KZ(42)
NSKIP	Binary frequency of mass spectrum (starting from body #1)
IDORM	Indicator for dormant binaries (> 0: merged components)

hipop.F:	if (kz(8)>0 and kz(18)>1)
SEMI	Max semi-major axis in model units (all equal if RANGE = 0)
ECC	Initial eccentricity (< 0 for thermal distribution)
RATIO	Mass ratio (= 1.0: $M1 = M2$; random in [0.5 ~ 0.9])
RANGE	Range in SEMI for uniform logarithmic distribution (> 0)

imbhinit.F:if (kz(24)=1)

lass of massive black hole in unit solar mass
dimensional position of massive black hole in unit pc
dimensional velocity of massive black hole in km/s
utput interval for massive black hole data in mbh. 45 and mbhnb. 46 (N-body unit)
1

cloud0.F: if (kz(13)>0)

NCL	Number of interstellar clouds
RB2	Radius of cloud boundary in pc (square is saved)
VCL	Mean cloud velocity in km/sec
SIGMA	Velocity dispersion (KZ(13)>1: Gaussian)
CLM	Individual cloud masses in solar masses (maximum MCL)
RCL2	Half-mass radii of clouds in pc (square is saved)

A typical input file can look like as follows. It defines a new simulation running for 1,000,000 CPU–minutes with N = 16,000 particles distributed along a Plummer profile (KZ(5)=1). The run may alternatively terminate when TCRIT=1000.0 N-body unit. or if a final particle number of NCRIT=10 has been reached. The output and adjustment time interval DELTAT/DTADJ are 1.0 N-body unit. The initial mass function follows a kroupa, 2001 with mass ranging from $m_{\text{max}} = 20.0M_{\odot}$ to $m_{\text{min}} = 0.08M_{\odot}$ (BODY1 and BODYN). The initial virial ratio is 0.5 (equilibrium). The stellar evolution is switched on (KZ(19)=3) and initial metallicity is 0.001. Multiples and chain regularization are switched on (KZ(15)=2 and KZ(30)=2). It uses solar neighbor tidal field (KZ(14)=1).

```
1 100000.0 1.E6 40 40 640

16000 1 10 43532 100 1

0.02 0.02 0.1 1.0 1.0 1000.0 2.0E-05 1.0 0.7

0 1 1 0 1 0 4 0 0 2

0 1 0 1 2 1 0 0 3 6

1 0 2 0 0 2 0 0 0 2

1 0 2 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

1.0E-06 1E-4 0.1 1.0 1.0E-06 0.01 1.0

2.35 20.0 0.08 0 0 0.001 0 1.0

0.5 0.0 0.0 0.0
```

Input variables for primordial Binaries

Many star clusters contain initial hard binaries with binding energies much larger than the thermal energy (the threshold ECLOSE is a suitable division between hard and soft binaries). There are two ways to initialise primordial binaries:

The first one always starts from some initial mass function (IMF) provided by the routines $\inf f$ or $\inf f f$. The option KZ(8)=1 or ≥ 3 invokes the routine inpop. F, which reads the last line of the input file containing NBIN and the parameters of their distribution (see above). In this case, binaries are created either by random pairing of single stars obtained from the IMF or by splitting them, depending on the value of KZ(20) — see there.

The second way assumes that particle data, including the binaries, are provided via the input data on file dat.10 (as e.g. in the Kyoto–II collaborative experiment). In such a case KZ(8)=2 and NBINO should be set to the expected number of primordial binaries from the file. The code will first create NBINO centers of masses, and then use those for scaling, before regularizing the pairs.

A typical input file with primordial binaries looks as follows. Here, we use binary random pairing from imf2.f and binpop.F (KZ(20)=6 and KZ(8)=3, respectively) for 1000 initial binaries. The semi-major axis of binaries use uniform distribution in log(semi) with ranging from 41.3 AU to 0.00413 AU. The eccentricity of binaries use thermal distribution. It was created from this input file running for 1000 time units. Stellar evolution was also switched on in this file (KZ(19)=3). In the package of the code, the file N10k_B1k.input is included.

```
1 1000000.0 1.E6 40 40 640

10000 1 10 43532 100 1

0.02 0.02 0.17 1.0 1.0 800.0 5.0E-05 1.0 0.7

0 1 1 0 1 0 4 3 0 2

0 1 0 1 2 1 0 0 3 6

1 0 2 0 0 2 0 0 0 2

1 0 2 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

5.0E-06 3E-4 0.1 1.0 1.0E-06 0.01 0.5

2.35 100.0 0.08 1000 0 0.001 0 1.0

0.5 0.0 0.0 0.0

2E-4 -1.0 1.0 1E4 5 0
```

Stellar Evolution

Stellar evolution is invoked by KZ(19)=1,2 or $KZ(19)\geq 3$, offering two different schemes. The simpler one is KZ(19)=1, while the more complex one, $K(19)\geq 3$, is based on the Cambridge stellar evolution school (Hurley, Pols, Tout 2000). Binaries are evolved as single stars without perturbing each other, any more complex binary evolution is not (yet) supported in NBODY6++. The main effects are changing stellar masses, radii, and luminosities, which give rise to cluster mass loss. The mass is assumed to escape from the cluster immediately and possible collisions depend on stellar radii.

With the additional option KZ(12)>0, information on binaries and single stars is written on two files (unit 82, file bev.82 and unit 83, file sev.83) in regular time intervals determined by TPLOT. The data for each star in unit 83 comprise of NAME(I), KW, RI, M1, ZL1, which are name of star, stellar type (see define.f), distance to density centre scaled with core radius, mass of the star, logarithmic luminosity, and logarithmic radius, respectively. (See Section Output)

Restart

It's very common that in the computer cluster every job has running time limit, or the simulation stop due to some energy conservation problem or the normal stop when the stop criterion is reached. In this case the user may want to continue the simulation from the last time point. Thus the input parameter should changed to restart mode. The first line of input shown above combined together with two extra lines (See the description of KSTART in the parameter table above). A simple example is :

2 1000000.0 1.E6 40 40 640

Here KSTART=2 means every parameters keep the same as before and just restart from the last dumping file fort.1. If the user want to change some parameters of simulation, the KSTART=3,5 can be set. For example:

3 1000000.0 1.E6 40 40 640 2.0 2.0 0.0 0.0 0.0 0.0 16 0

This restart file will change DTADJ and DELTAT to 2.0. The KZ(16) is changed to 0. All other parameters that are set to 0.0 (TADJ, TNEXT, TCRIT, QE) keep same as before.

5 Thresholds for the variables

Before the compilation of the code (Chapter 3), the parameter file (params.h) should be consulted to check whether some vector dimensions are in the desired range. Most important are

- the maximum particle number NMAX,
- the maximum number of regularised KS pairs KMAX, and
- the maximum number of neighbours per particle LMAX.

The particles are saved in various lists which serve to distinguish between their funcionality. The table below and Figure **??** (Figure not finished!!!) explain their nomenclature. "KS–pairs" are particles that approach each other in a hyperbolic encounter; they are given a special treatment by the code (see Chapter 11). If NPAIRS is the amount of KS–pairs, then IFIRST = 2*NPAIRS + 1 is the first single particle (not member of a KS pair), and N the last one. NTOT = N + NPAIRS is the total number of particles plus c.m.'s. Therefore NMAX, the dimension of all vectors containing particle data should be at least of size N + KMAX, where N is the number of particles and KMAX the maximum number of expected KS pairs. If one starts with single particles, KMAX = 10 or 20 should usually be enough, but in clusters with a large number of primordial binaries, KMAX must be large.

N:	Total number of particles
NBIN0:	number of primordial binaries (physical bound stars)
NBIN:	???
NPAIRS:	Number of binaries (KS-pairs, see Chapter ??), transient unbound pairs as well as persistent binaries
NTOT:	= N + NPAIRS;
	Number of single particles plus centres of masses of regularized (KS) pairs
KMAX:	threshold for the amount of allowed KS pairs
NMAX:	= N + KMAX; threshold for the total number of particles and the centre of masses

Hier gibt's noch ein Bildchen!

6 How to read the diagnostics

The diagnostics is the ASCII readable text printed on unit 6 *stdout* ("out1000" in Chapter 3) that gives a brief overview of the global status and progress of the cluster simulation. Different routines write into that file, depending on the options chosen as the input variables. The following lines occur:

```
N NFIX NCRIT NRAND NNBOPT NRUN
                                                1000
                                                                                 10 1006
                                                                        5
                                                                                                                                  50
                                                                                                                                                 1
                                                  ETAI
                                                                              ETAR
                                                                                                         RSO
                                                                                                                                                                                              TCRITp
                                                                                                                                                                                                                                                                                                               ZMBAR
                                                                                                                                     DTADJ
                                                                                                                                                               DELTAT
                                                                                                                                                                                                                          TCRIT
                                                                                                                                                                                                                                                    QE
                                                                                                                                                                                                                                                                                 R B AR
                                                  1.0E-02 2.0E-02 3.0E-01 1.0E+01 1.0E+01 1.0E+06 2.0E+01
                                                                                                                                                                                                                                                  2.0E-05
                                                                                                                                                                                                                                                                            1.0E+00
                                                                                                                                                                                                                                                                                                        7.0E-01
                                                OPTIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      written by the routine:
                                            1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                input.F
                                            1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 4 \hspace{0.1cm} 0 \hspace{0.1cm} 2 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 2 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 2 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm} 1 \hspace{0.1cm} 0 \hspace{0.1cm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Usage: Repetition of the
                                                OPTIONS BK:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     input variables
                                             1 2 3 4 5 6 7 8 9 10
                                             0 0 0 0 0 0 0 0 0 0
                                                DTMIN
                                                                          RMIN
                                                                                                      ETAU
                                                                                                                                  ECLOSE
                                                                                                                                                             GMIN
                                                                                                                                                                                         GMAX
                                                1.0E-04 1.0E-02 1.0E-01 1.0E+00 1.0E-06
                                                                                                                                                                                     1.0E-02
                    ****** NOTE: new random number seed initialisation!
                    ***** AND new ran2 from new ed. of Press et al.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              data.F,
                                STANDARD IMF
                                                                      ALPHA = 2.35 BODY1 = 20.0 BODYN = 0.10 ZMASS = 3.36752E+02 NBINO= 0 ZMET = 0.00 EPOCHO = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (if KZ(20)=0 &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BODY1≠BODYN)
                                BINARY STAR IMF: NB = 400 RANGE = 3.27E+01 2.14E-01 ZMB = 3.74E+02 <MB> = 9.36E-01
                                 SINGLE STAR IMF: NS = 1200 RANGE = 7.76E+00 1.01E-01 ZMS = 5.25E+02 <MS> = 4.38E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         or
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    imf2.F, if KZ(20)≥2
IMF power law index, max. mass, min. mass, total mass, # of primordial bin., metallicity, evolution. epoch [Myrs].
 .....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Information about initial
number of objects, mass range, average mass before scaling.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    mass function (IMF).
```

```
      SCALING:
      SX = 1.00421D+00
      E = -2.49E-01
      M(1) = 5.94E-02
      M(N) = 2.97E-04
      <N> = 1.00E-03

      TIME SCALES:
      TRH = 2.8E+01
      TCR = 2.8E+00
      2<R>/<V> = 2.8E+00

      PHYSICAL SCALING:
      R* = 1.0000E+00
      M* = 7.0000E+02
      V* = 1.7348E+00
      T* = 5.6466E-01
      <M> = 7.0000E-01

      SU = 4.4335E+07
      AU = 2.0627E+05
      YRS = 3.5408E+06
```

scaling factor for energy, total energy, max. mass, min. mass, average mass after scaling;

Spitzer's half-mass relaxation time, crossing time obtained from total energy and mass, crossing time obtained from virial radius (see 12);

information about physical scaling: values of one N-body unit in length (pc), mass (solar masses), velocity (km/s), time (million years), average mass of particles (solar masses), astronomical units (one N-body unit) and years (one N-body unit).

fpoly1 time= 0.1200000035762785 fpoly2 time= 0.2100000062584875

CPU (wall clock in parallel execution) time for initialising the force and its time derivative (fpoly1, fpoly_mpi.f) start.F and the second and third time derivative of the force (fpoly2, fpoly2_mpi.f). The mpi-versions are called for initialisation in case of parallel runs.

 TIME
 M/MT:
 1.00D-02
 2.00D-02
 5.00D-02
 1.00D-01
 2.00D-01
 3.00D-01
 4.00D-01
 5.00D-01
 7.00D-01
 9.00D-01
 1.00D+00
 <RC</th>

 0.0
 RLAGR:
 1.52D-01
 1.81D-01
 1.91D-01
 2.38D-01
 4.33D-01
 5.22D-01
 6.17D-01
 7.52D-01
 1.16D+00
 1.96D+00
 5.86D+00
 2.97D-01

 0.0
 AVMASS:
 6.26D-04
 4.26D-03
 6.13D-04
 9.45D-04
 7.82D-04
 1.10D-03
 8.35D-04
 9.19D-04
 1.22D-03
 9.01D-04
 1.23D-03

 0.0
 WFARTC:
 1
 9
 2
 53
 130
 90
 91
 122
 216
 163
 107
 90

 0.0
 SIGR2:
 2.10D-01
 1.70D-01
 7.37D-01
 2.44D-01
 1.339D-01
 2.44D-01
 1.10D-03
 1.51D-01
 1.51D-01
 1.53D-02
 5.90D-02
 2.90D-01

 0.0
 WROT:
 -8.34D-02
 4.46D-02
 2.12D-01
 3.39D-01
 2.44D-01
 1.51D-01
 1.51D-01
 1.50D-02

Time, specification of the Lagrangian radii, core radius

Time, Lagrangian radii, core radius (if primordial binaries: separately for singles and binaries, not shown above)

Time, average mass between Lagrangian radii, avmass in the core

Time, number of particles within the shell, in the core

Time, radial velocity dispersion within the shell, in the core

Time, tangential vel. dispersion within the shell, in the core

Time, rotational vel. within the shell, in the core (not shown above)

lagr.F

24

rank, "ADJUST:", total time in NB units, physical time, virial ratio, relative energy error, total energy, total energy of regularized pairs, energy of mergers

RMIN = 1.1E-03 DTMIN = 3.5E-05 RHOM = 3.5E+02 RSCALE = 9.5E-01 RSMIN = 2.2E-01 ECLOSE = 1.05 TC = 3 PE N ttot treg tirr tpredtot tint tinit tks ttcomm tadj tmov tprednb tsub tsub2 xtsub1 xtsub2 0 1000 41.46000 29.54 7.23 0.63 40.39 0.99 0.07 0.00 0.59 0.00 1.50 0.00 0.00 0.0000D+00 0.0000D+00	
close encounter distance and minimum time step (for regularization search, updated from input parameters if	
KZ(16)=1), maximum density, virial radius, minimum neighbour sphere, hard binary threshold energy, total run time	
in units of initial crossing times	
number of processors, number of particles, total processing time, total regular processing, total irregular processing,	adjust.F
processing of prediction, time spent in intgrt.F, for initialisation, for KS integration, for communication, for adjust	0
and energy check, for overhead of moving data in parallel runs, for neighbour predictions, for MPI communicati-	
on after irregular (tsub) and regular (tsub2) blocks, number of bytes transferred respectively. From xtsub1/tsub and	
xtsub2/tsub2 the sustained bandwidth of MPI communication can be read off. Note, that the determination of these	
quantities involves a certain overhead by many calls of cputim. F per block, so for critically large production runs	
one may want to comment these out (most of them in intgrt.F).	
0 T = 10.0 N = 1000 <nb> = 20 KS = 0 NM = 0 NS = 1000 NSTEPS = 1610624 273 321696 1016 DE = -0.140382E-04 E = -0.250004</nb>	
NRUN = 1 M# = 1 CPU = 6.91000E-01 TRC = 0.0 DMIN = 6.6E-05 6.6E-05 1.0E+02 1.0E+02 AMIN = 1.0E+02 RMAX = 0.0E+00 RSMIN = 0.22 NEFF = 128	
<r> RTIDE RDENS RC NC MC RHOD RHOM CMAX <cd> IT/R UN NP RCM VCM AZ EB/E EM/E TCR T6 #1 0.95 9.5 0.21 0.08 5 0.073 159. 350. 5. 37.0 0.13 0 0 0.000 0.0000 0.006197 0.000 0.000 2.83 5</cd></r>	
NNPRED NBCORR NBFULL NBVOID NRCONV NICONV NBSMIN NBDIS NBDIS2 NCMDER NBDER NFAST NBFAST NBLOCK NBPRED #2 20204 294307 0 98 2664 9227 1576 0 0 33 0 0 0 58132 3045868	
NKSTRY NKSREG NKSHYP NKSPER NPRECT NKSREF NKSMOD NTTRY NTRIP NQUAD NCHAIN NMERG NSTEPT NSTEPQ NSTEPC NBLCKR NBFLUX #3 14463 45 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	output.F
time, actual particle number, average neighbour number, number of KS pairs, number of merged KS pairs, number of hierarchical subsystems, number of single stars, step numbers (irregular, irr. c.m., regular, KS), relative energy error since last output, total energy	
several more lines uncommented here	

25

adjust.F

STEP I	0	3	63	91	154	220	160	133	109	44	19	4				
STEP R	0	4	77	133	249	310	179	45	3							
Max Speed	lup Ir:	r:	4	3.76D	+00	8	6.82D+	00	16 1.	14D+01	. 3	2 1.66D+01	64 2.15D+01	128 2.49D+01	256 2.66D+01	512 2.74D+01 1024 2.77D+01
Max Speed	lup Reg	g:	4	3.71D	+00	8	6.69D+	00	16 1.	12D+01	. 3	2 1.67D+01	64 2.22D+01	128 2.62D+01	256 2.91D+01	512 3.04D+01 1024 3.11D+01

histogram of distribution of irregular (STEP I), regular (STEP R)

If there are p step distribution (not appearing here, STEP U, in physical time), statistics of parallel work for irr. and reg. steps, figures given are theoretical speedups for infinitely fast communication (limit of large block sizes)

END RUN TIME[Myr] = 11.29 TOFF/TIME/TTOT= 0.0000000 20.0000000 CPUTOT = 1.6 ERRTOT =-5.15000D-05 DETOT =-1.28197D-05 0 INTEGRATION INTERVAL = 20.00 NIRR= 3237662 NIRRE= 1245 NREG= 779010 NKS= 4625 PER TIME UNIT: NIRR= 1.61883D+05 NIRRE= 6.22500D+01 NREG= 3.89505D+04 NKS= 2.31250D+02 Total CPU= 97.11000289410342

This is the regular end of a run giving: the integration time, total cumulative absolute and relative errors, cumulative adjust.F number of regular, irregular, KS steps, the step numbers per time unit and the total CPU (wall clock for parallel) time in minutes.

levels.f

To check a regular stop of the run, look at the end of the diagnostics first. If there are failures, the line "CALCULATION HALTED" appears and means that the energy conservation could not be guaranteed. A restart with smaller steps (ETAI, ETAR) and larger neighbour number NNBOPT may cure the problem, but not always; persistent problems should be reported to Rainer Spurzem.

The unix command on the output file, e.g.

homedir> grep ADJUST out1000

produces an overview of the accuracy (energy error at every DTADJ interval). It may show where problems originated; a restart from the last ADJUST before the error with smaller output intervals is one way to look after it. Watch out, because sometimes errors are not reproducible, because changes in ADJUST intervals change frequencies of prediction and small differences can build up. A quick possibility to see the real evolution of the system is to grep for the lines with Lagrangian radii and other quantities (see above), which can directly be plotted, e.g. with gnuplot, because the first column is always the time.

7 Runs on parallel machines

For parallel runs, the file mpif.h is very important, and system specialists should be consulted in addition to us what to use. Again, for some standard systems templates are provided (e.g. mpif.t3e.h or mpif.mpich.h). The routine providing CPU-time measurements, cputim.F, and the use of the function flush.f may need special attention depending on the hardware.

8 The Hermite integration method

Each particle is completely specified by its mass *m*, position \mathbf{r}_0 , and velocity \mathbf{v}_0 , where the subscript 0 denotes an initial value at a time t_0 . The equation of motion for a particle *i* is given by its momentary acceleration $\mathbf{a}_{0,i}$ due to all other particles and its time derivative $\dot{\mathbf{a}}_{0,i}$ as

$$\mathbf{a}_{0,i} = -\sum_{i \neq j} Gm_j \frac{\mathbf{R}}{R^3}, \tag{1}$$

$$\dot{\mathbf{a}}_{0,i} = -\sum_{i \neq j} Gm_j \left[\frac{\mathbf{V}}{R^3} + \frac{3\mathbf{R}(\mathbf{V} \cdot \mathbf{R})}{R^5} \right], \qquad (2)$$

where *G* is the gravitational constant; $\mathbf{R} = \mathbf{r}_{0,i} - \mathbf{r}_{0,j}$ is the relative coordinate; $R = |\mathbf{r}_{0,i} - \mathbf{r}_{0,j}|$ the modulus; and $\mathbf{V} = \mathbf{v}_{0,i} - \mathbf{v}_{0,j}$ the relative space velocity to the particle *j*.

The Hermite scheme employed in NBODY6++ follows the trajectory of the particle by firstly "predicting" a new position and new velocity for the next time step *t*. A Taylor series for $\mathbf{r}_i(t)$ and $\mathbf{v}_i(t)$ is formed:

$$\mathbf{r}_{p,i}(t) = \mathbf{r}_0 + \mathbf{v}_0(t-t_0) + \mathbf{a}_{0,i}\frac{(t-t_0)^2}{2} + \dot{\mathbf{a}}_{0,i}\frac{(t-t_0)^3}{6},$$
(3)

$$\mathbf{v}_{p,i}(t) = \mathbf{v}_0 + \mathbf{a}_{0,i}(t-t_0) + \dot{\mathbf{a}}_{0,i}\frac{(t-t_0)^2}{2}.$$
(4)

The predicted values of \mathbf{r}_p and \mathbf{v}_p , which result from this simple Taylor series evaluation, using the force and its time derivative at t_0 , do not fulfil the requirements for an accurate high–order integrator; they just give a first approximation to \mathbf{r}_1 and \mathbf{v}_1 at the upcoming time t_1 . Even if the time step, $t_1 - t_0$, is chosen impracticably small, a considerable error will quickly occur, let alone the inadequate computational effort. Therefore, an improvement is made by the Hermite interpolation which approximates the higher accelerating terms by another Taylor series:

$$\mathbf{a}_{i}(t) = \mathbf{a}_{0,i} + \dot{\mathbf{a}}_{0,i} \cdot (t - t_{0}) + \frac{1}{2} \mathbf{a}_{0,i}^{(2)} \cdot (t - t_{0})^{2} + \frac{1}{6} \mathbf{a}_{0,i}^{(3)} \cdot (t - t_{0})^{3},$$
(5)

$$\dot{\mathbf{a}}_{i}(t) = \dot{\mathbf{a}}_{0,i} + \mathbf{a}_{0,i}^{(2)} \cdot (t - t_0) + \frac{1}{2} \mathbf{a}_{0,i}^{(3)} \cdot (t - t_0)^2.$$
(6)

Here, the values of $\mathbf{a}_{0,i}$ and $\dot{\mathbf{a}}_{0,i}$ are already known, but a further derivation of equation (2) for the two missing orders on the right hand side turns out to be quite cumbersome. Instead, one determines the additional acceleration terms from the predicted ("provisional") \mathbf{r}_p and \mathbf{v}_p ; we calculate their acceleration and time derivative according to the equations (1) and (2) anew and call these new terms $\mathbf{a}_{p,i}$ and $\dot{\mathbf{a}}_{p,i}$, respectively. Because these values ought to be generated by the former high–order terms also (which we avoided), we put them into the left–hand sides of (5) and (6). Solving equation (6) for $\mathbf{a}_{0,i}^{(2)}$, then substituting it into (5) and simplifying yields the third derivative:

$$\mathbf{a}_{0,i}^{(3)} = 12 \frac{\mathbf{a}_{0,i} - \mathbf{a}_{p,i}}{(t-t_0)^3} + 6 \frac{\dot{\mathbf{a}}_{0,i} + \dot{\mathbf{a}}_{p,i}}{(t-t_0)^2}.$$
(7)

Similarly, substituting (7) into (5) gives the second derivative:

$$\mathbf{a}_{0,i}^{(2)} = -6\frac{\mathbf{a}_{0,i} - \mathbf{a}_{p,i}}{(t - t_0)^2} - 2\frac{2\dot{\mathbf{a}}_{0,i} + \dot{\mathbf{a}}_{p,i}}{t - t_0}.$$
(8)

Note, that the desired high–order accelerations are found just from the combination of the low– order terms for \mathbf{r}_0 and \mathbf{r}_p . We never derived higher than the first derivative, but achieved the higher orders easily through (1) and (2). This is called the Hermite scheme.

Previously, a four-step Adams-Bashforth-Moulton integrator was used (especially in NBO-DY5, [2]), however, the new Hermite scheme allows twice as large timesteps for the same accuracy. Also its storage requirements are less [16], [17], [4], [5].

Finally, we extend the Taylor series for $\mathbf{r}_i(t)$ and $\mathbf{v}_i(t)$, eqs. (3) and (4), by two more orders, and find the "corrected" position $\mathbf{r}_{1,i}$ and velocity $\mathbf{v}_{1,i}$ of the particle *i* at the computation time t_1 as

$$\mathbf{r}_{1,i}(t) = \mathbf{r}_{p,i}(t) + \mathbf{a}_{0,i}^{(2)} \frac{(t-t_0)^4}{24} + \mathbf{a}_{0,i}^{(3)} \frac{(t-t_0)^5}{120},$$
(9)

$$\mathbf{v}_{1,i}(t) = \mathbf{v}_{p,i}(t) + \mathbf{a}_{0,i}^{(2)} \frac{(t-t_0)^3}{6} + \mathbf{a}_{0,i}^{(3)} \frac{(t-t_0)^4}{24}.$$
 (10)

The integration cycle for other upcoming steps may now be repeated from the beginning, eqs. (1) and (2). The local error in **r** and **v** within the two time steps $\Delta t = t_1 - t_0$ is expected to be of order $\mathcal{O}(\Delta t^5)$, the global error for a fixed physical integration time scales with $\mathcal{O}(\Delta t^4)$ [15].

9 Individual and block time steps

Stellar systems are characterized by a huge dynamical range in radial and temporal scales. The time scale varies e.g. in a star cluster from orbital periods of binaries of some days up to the relaxation of a few hundred million years, or even billions of years. Even if we put for a moment the very close binaries aside, which are treated differently (by regularization methods), there typically is a large dynamic range in the average local stellar density from its centre to the very outskirts, where it dissolves into the galactic tidal field. In a classical picture, the two closest bodies would determine the time-step of force calculation for the whole rest of the system. However, for bodies in regions where the changes of the force are relatively small, a permanent re-computing of the terms appears time consuming. So, in order to economize the calculation, these objects shall be allowed to move a longer distance before a recomputation becomes necessary. In between there is always the possibility to acquire particle positions and velocities via a Taylor series prediction, as described in Chapter 8. This is the idea of a vital method for assigning different time-steps, $\Delta t = t_1 - t_0$, between the force computations, the so-called "individual time-step scheme" [1], which was later advanced to the hierarchical block steps.

Figure 9.1: Block time steps exemplary for four particles.

Each particle is assigned its own Δt_i which is first illustrated for the case of "block time–steps" in Figure 9.1. The particle named *i* has the smallest time step at the beginning, so its phase space coordinates are determined at each time step. The time step of *k* is twice as large as *i*'s, and its coordinates are just extrapolated ("predicted") at the odd time steps, while a full force calculation is due at the dotted times. The step width may be altered or not after the end of the integration cycle for the special particle, as demonstrated for *k* and *l* beyond the label "8". The time steps have to stay commensurable with both, each other as well as the total time, such that a hierarchy is guaranteed. This is the block step scheme.

As a first estimate, the rate of change of the acceleration seems to be a reasonable quantity for the choice of the time step: $\Delta t_i \propto \sqrt{\mathbf{a}_i/\dot{\mathbf{a}}_i}$. But it turns out that for special situations in a many-body system, it provides some undesired numerical errors. After some experimentation, the following formula was adopted [2]:

$$\Delta t_{i} = \sqrt{\eta \frac{|\mathbf{a}_{1,i}||\mathbf{a}_{1,i}^{(2)}| + |\dot{\mathbf{a}}_{1,i}|^{2}}{|\dot{\mathbf{a}}_{1,i}||\mathbf{a}_{1,i}^{(3)}| + |\mathbf{a}_{1,i}^{(2)}|^{2}}},$$
(11)

where η is a dimensionless accuracy parameter which controls the error. In most applications it is taken to be $\eta \approx 0.01$ to 0.02, see also next chapter.

For the block-time steps, the synchronization is made by taking the next-lowest integer of Δt_i ; the time steps are quantized to powers of 2 [15]. Then, there will be a group (block) of several particles which are due to movement at each time step. If one keeps the exact Δt_i 's evaluated from (11) for each particle, the commensurability is destroyed, and we arrive at the so-called "individual time steps"; in this case, there exists one sole particle being due. The latter concept is realized in the earlier codes NBODY1, NBODY3, NBODY5, where a neighbour scheme is renounced. NBODY4, NBODY6, and NBODY6++ use a block step scheme.

Subsystems like star binaries, triples or a similar subgroups (they are termed KS pairs, chains, hierarchies) enter the time–step scheme with their respective centre's of masses only. Their internal motion is treated in a different way by a regularized integration (Chapter 11).

10 The Ahmad–Cohen scheme

The computation of the full force for each particle in the system makes simulations very time– consuming for large memberships. Therefore, it is desirable to construct a method in order to speed up the calculations while retaining the collisional approach. One way to achieve this is to employ a "neighbour scheme", suggested by [9].

The basic idea is to split the force polynomial (5) on a given particle *i* into two parts, an irregular and a regular component:

$$\mathbf{a}_i = \mathbf{a}_{i,\mathrm{irr}} + \mathbf{a}_{i,\mathrm{reg}}.\tag{12}$$

The irregular acceleration $\mathbf{a}_{i,\text{irr}}$ results from particles in a certain neighbourhood of *i* (in the code, FI and FIDOT are the irregular force and its time derivative at the last irregular step; internally some routines use FIRR and FD as a local variable). They give rise to a stronger fluctuating gravitational force, so it is determined more frequently than the regular one of the more distant particles that do not change their relative distance to *i* so quickly (in the code, FR and FRDOT are the regular force and its time derivative at the last regular step; some routines use as a local variable FREG and FDR). We can replace the full summation in eq. (1) by a sum over the N_{nb} nearest particles for $\mathbf{a}_{i,\text{irr}}$ and add a distant contribution from all the others. This contribution is updated using another Taylor series up to the order FRDOT, the time derivative of FR at the last regular force computation¹.

Wether a particle is a neighbour or not is determined by its distance; all members inside a specified sphere ("neighbour sphere" with radius r_s) are held in a list, which is modified at the end of each "regular time–step" when a total force summation is carried out. In addition, approaching particles within a surrounding shell satisfying $\mathbf{R} \cdot \mathbf{V} < 0$ are included. This "buffer zone" serves to identify fast approaching particles before they penetrate too far inside the neighbour sphere. The neighbour criterion should be improved according to relative forces rather than distances, in particular, if there are very strong mass differences between particles (black holes!) — such kind of work is under progress.

Figures 10.1 and 10.2 show how the Ahmad–Cohen scheme works for one particle [17]. At the beginning of the force calculation, a list of neighbour objects around the particle *i* is created first (filled dots). From this neighbour list the irregular component $\mathbf{a}_{i,\text{irr}}$ is calculated, and then the summation is continued to the distant particles obtaining $\mathbf{a}_{i,\text{reg}}$. At the same time we also calculate the first time derivative. From the equations (5) and (6) the position and velocity of the particle *i* are predicted. At time $t_{1,\text{irr}}$ we apply the "corrector" only for $\mathbf{a}_{i,\text{reg}}$. At the next step, $t_{2,\text{irr}}$, the same predictor–corrector method proceeds for the neighbour particles, while the correction of the distant acceleration term is still neglected. When t_1 is reached, the total force is calculated on the basis of the full application of the Hermite predictor–corrector method. Also, a new neighbour list is constructed using the positions at time t_1 . Thus, we calculate at certain times only the forces from neighbours (irregular time–step, t_{irr}), while at other times we calculate both the forces from neighbours and distant particles (regular time–step, t_{reg}).

For a neighbour list of size $N_{nb} \ll N$, this procedure can lead to a significant gain in efficiency, provided the respective time scales for $\mathbf{a}_{i,irr}$ and $\mathbf{a}_{i,reg}$ are well separated.

The actual size of neighbour spheres in NBODY6++ is controlled iteratively by a requirement in order to keep a certain optimal number of neighbours. This variable, NNBOPT, can be adjusted

¹Note, that the code also keeps the variables F and FDOT, which contain one half (!) of the *total* force, and one sixth (!) of the *total* time derivative of the force; this just a handy assignment for the frequent predictions of equation 3.

Figure 10.1: Illustration of the neighbour scheme for particle *i* marked as the asterisk (after [2]).

according to performance requirements. Its typical values are between 50 and 200 for a very wide range of total particle numbers *N*. Outside of the half-mass radius, the requirement of having NNBOPT neighbours is relaxed due to low local densities. Insisting on NNBOPT neighbours could result in undesired large amplitude fluctuations of the neighbour radii.

While [18] claim that the optimal neighbour number should grow as $N^{3/4}$ (which would be unsuitable for the performance on parallel computers), this is still an unsettled question. [2] advocates the coupling of the neighbour radius to the local density contrast, but NBODY6++ does *not* use that, since it makes average neighbour numbers much less predictable, which is bad for the performance and profiling issues on supercomputers, again.

Resuming, the method of the two particle groups is squeezed into the hierarchical time-step scheme making the overall view quite complex. Each particle is moved due to its time-step order *and* the time-steps, because the force calculation is divided: In eq. (11) a further subscript is needed which distinguishes the regular and irregular time step. The accuracy can be tuned by $\eta_{irr} \approx 0.01$ and $\eta_{reg} \approx 0.02$, again.

Both, the neighbour scheme and the hierarchical time-step scheme have in common that they

Figure 10.2: Regular and irregular time steps (after [17]).

are centered on one particle *i*, and they distinguish between nearby and remote stars, and they save computational time. One may ask: What is the intriguing difference between them? — The neighbour scheme is a *spatial* hierarchy, which avoids a frequent force calculation of the remote particles, because their totality provides a smooth potential which does not vary so much with respect to the particle *i*; that potential is rather superposed by some fluctuating peaks of close–by stars which will be "worked in" by the more often force determination. The time step scheme, in contrast, exhibits the *temporal* behaviour of the intervals for re–calculation of the full force in order to maintain the exactness of the trajectory; time steps chosen too small slow down the advancing calculation losing the computer's efficiency.

11 KS–Regularization

The fourth main feature of the codes since NBODY3 is a special treatment of close binaries. A close encounter is characterised by an impact parameter that is smaller than the parameter for a 90 degree deflection

$$p_{90} = 2G(m_1 + m_2)/v_{\infty}^2 \tag{13}$$

where G, m_1 , m_2 , v_{∞} are the gravitational constant, the masses of the two particles and their relative velocity at infinity. In the cluster centre, it is very likely that two (or even more) stars come very close together in a hyperbolic encounter. As the relative distance of the two bodies becomes small ($R \rightarrow 0$), their timesteps are reduced to prohibitively small values, and truncation errors grow due to the singularity in the gravitational potential, eqs. (1) and (2). In the NBODY code, the parameter RMIN is used to define a close encounter, and it is kept to the value of equation 13 (if KZ(16) > 0 is chosen in the control parameters). The corresponding time step DTMIN can be estimated from

$$dt_{\min} = \kappa \left[\frac{\eta}{0.03}\right] \left(\frac{r_{\min}^3}{\langle m \rangle}\right)^{1/2} \tag{14}$$

where κ is a free numerical factor, η the general time step factor, and $\langle m \rangle$ the average stellar mass [2]. If two particles are getting closer to each other than RMIN, and their time steps getting smaller than DTMIN, then they are candidates for "regularization".

Regularization is an elegant trick in order to deal with such particles which are as close as the diamond in the Figure 10.1. The idea is to take both stars out of the main integration cycle, replace them by their centre of mass (c.m.) and advance the usual integration with this composite particle instead of resolving the two components. The two members of the regularized pair (henceforth KS pair) will be relocated to the beginning of all vectors containing particle data, while at the end one additional c.m. particle is created (see below). One of the purposes of the code variable NAME(I) is to identify particles after such a reshuffling of data.

To be actually regularized, the two particles have to fulfil two more sufficient criteria: that they are approaching each other, and that their mutual force is dominant. In the equations in routine search.f, these sufficient criteria are defined as

$$\mathbf{R} \cdot \mathbf{V} > 0.1 \sqrt{(G(m_1 + m_2)R)}$$
$$\gamma := \frac{|\mathbf{a}_{\text{pert}}| \cdot R^2}{G(m_1 + m_2)} < 0.25$$

Here, \mathbf{a}_{pert} is the vectorial differential force exerted by other perturbing particles onto the two candidates, *R*, **R**, **V** are scalar and vectorial distance and relative velocity vector between the two candidate, respectively. The factor 0.1 in the upper equation allows nearly circular orbits to be regularized; $\gamma < 0.25$ demands that the relative strength of the perturbing forces to the pairwise force is one quarter of the maximum. These conditions describe quantitatively that a two-body subsystem is dynamically separated from the rest of the system, but not unperturbed.

The internal motion of a KS pair will be determined by switching to a different (regularized) coordinate system. This transformation can be traced back to the square in quaternion space, where — by sacrificing some commutativity rules — it is guaranteed that the real-space motion does not leave the three-dimensional Cartesian space. It involves a set of four regular spatial coordinates and a fictitious time s(t), obtained in its simplest variant by the transformation dt = Rds. Any unperturbed two-body orbit in real space is mapped onto a harmonic oscillator in KS-space with double the frequency. Since the harmonic potential is regular, numerical integration with high accuracy can proceed with much better efficiency, and there is no danger of truncation errors for

arbitrarily small separations. The internal time-step of such a KS-regularized pair is independent of the eccentricity and, depending on the parameter ETAU, of the order of some 50–100 steps per orbit. The method of regularization goes back to [14] and makes an accurate calculation of a perturbed two-body motion possible. A modern theoretical approach to this subject can be found in [25]; the Hamiltonian formalism of the underlying transformations is nicely explained in [20].

While regularization can be used for any analytical two-body solution across a mathematical collision, it is practically applied to perturbed pairs only. Once the perturbation γ falls below a critical value (input parameter GMIN $\approx 10^{-6}$), a KS-pair is considered unperturbed, and the analytical solution for the Keplerian orbit is used instead of doing numerical integration. A little bit misleading is that such unperturbed KS-pairs are denoted in the code as "mergers", e.g. in the number or merges (NM) and the energy of the mergers (EMERGE). Merged pairs can be resolved at any time if the perturbation changes. The two-body KS regularization occurs in the code either for short-lived hyperbolic encounters or for persistent binaries.

In the code, the KS-pair appears as a new particle at the postion of the centre of mass. The variable NTOT, that contains the total number of particles N plus the c.m.'s, is increased by 1. When the pair is disrupted, NTOT is decreased again. The maximum number of possible KS-pairs is saved in the variable KMAX, which sets a threshold for the extension of the vector NTOT (see Chapter 5).

Close encounters between single particles and binary stars are also a central feature of cluster dynamics. Such temporary triple systems often reveal irregular motions, ranging from just a perturbed encounter to a very complex interaction, in which disruption of binaries, exchange of components and ejection of one star may occur. Although not analytically solvable, the general three–body problem has received much attention. So, the KS–regularization was expanded to the isolated 3– and 4–body problem, and later on to the perturbed 3–, 4–, and finally to the N–body problem. The routines are called

- triple.f (unperturbed 3-body subsystems, [8]),
- quad.f (unperturbed 4-body subsystems), and
- chain.f with different stages of implementation (slow-down, Stumpff functions, see for consecutive references Mikkola & Aarseth 1990, 1993, 1996, 1998, and [20]).

While occurrences of "triple" and "quad" will be rare in a simulation, the chain regularization is invoked if a KS-pair has a close encounter with another single star or another pair. Especially, if systems start with a large number of primordial binaries, such encounters may lead to stable (or quasi-stable) hierarchical triples, quadruples, and higher multiples. They have to be treated by using special stability criteria. Some of them are actually already implemented, but there is ongoing research and development in the field.

A typical way to treat all such special higher subsystems is to define their c.m. to be a pseudoparticle, i.e. a particle with a known sub-structure (very much like nodes in a TREE code). The members of the pseudo-particles will be deactivated by setting their mass to zero (ghost particles). At present there can only exist one chain at a time in the code, while merged KS binaries, and hierarchical subsystems can be more frequent. Details of these procedures are beyond the scope of this introductory manual.

Every subsystem — KS pair, chain or hierarchical subsystem — is perturbed. Perturbers are typically those objects that get closer to the object than $R_{sep} = R/\gamma_{min}^{1/3}$, where R is the typical size of the subsystem; for perturbers, the components of the subsystem are resolved in their own force computation as well (routines cmfreg.f, cmfirr.f).

12 Nbody–units

The NBODY-code uses Dimensionless units, so-called "Nbody units". They are obtained when setting the gravitational constant G and the initial total cluster mass M equal to 1, and the initial total energy E to -1/4 (see [12], [7]).

Since the total energy *E* of the system is E = K + W with $K = \frac{1}{2}M\langle v^2 \rangle$ being the total kinetic energy and $W = -(3\pi/32)GM^2/R$ the potential energy of the Plummer sphere, we find from the virial theorem that

$$E = \frac{1}{2}W = -\frac{3\pi}{64}\frac{GM^2}{R}.$$
 (15)

R is a quantity which determines the length scale of a Plummer sphere. Using the specific definitions for *G*, *M*, and *E* above, this scaling radius becomes $R = 3\pi/16$ in dimensionless units. The half mass radius r_h can easily be evaluated by the formula (e.g. [26]):

$$M(r) = M \frac{r^3/R^3}{(1+r^2/R^2)^{3/2}}$$
(16)

when setting $M(r_h) = \frac{1}{2}M$. It yields $r_h = (2^{2/3} - 1)^{-1/2}R = 1.30R$. The half-mass radius is located at R = 0.766, or about 3/4 "Nbody-radii".

The virial radius of a system is defined by $R_{\text{vir}} = GM^2/2|W|$, while the r.m.s. velocity is $\langle v^2 \rangle^{1/2} = 2K/M$. In virial equilibrium |W| = 2K, so it follows for the crossing time

$$t_{\rm cr} := \frac{2R_{\rm vir}}{\langle v^2 \rangle^{1/2}} = \frac{GM^{5/2}}{(2|E|)^{3/2}}.$$
(17)

The setting of G = M = 1 and E = -0.25 also determines the unit of time; so it follows that $t_{cr} = 2\sqrt{2}$ in *N*-body units. By inversion we have

$$\tau_{\rm NB} = \frac{GM^{5/2}}{(4|E|)^{3/2}},\tag{18}$$

for the unit of time τ_{NB} . The virial radius of Plummer's model is $R_{\text{vir}} = 1$ in N-body units.

13 Output

	Global properties
Time	time of simulation
RSCALE	Half mass radius
RTIDE	Tidal radius
RC	Core radius
NC	Number of stars inside core radius
VC	r.m.s velocity inside core radius
$\langle M \rangle$	Average mass of star
M1	Mass of most massive star
ZMASS	Total mass of cluster
MODEL	
NRUN	Run identification index
TIDAL4	Twice angular velocity
	Energy
BE(1)	Intial total energy
BE(2)	Last adjust total energy
BE(3)	Current total energy
ZKIN	Kinetic energy
РОТ	Potential energy
ETIDE	Tidal energy
ETOT	Total energy
E	Mechanical energy: ZKIN - POT + ETIDE (3)
ESUB	Binding energy of unperturbed triples and quadruples
EMERGE	Binding energy of mergers (9)
EBIN	Binding energy of KS binaries
ECOLL	The difference of binding energy of inner binary at the end and begin
	of hierarchical systems (10)
EMDOT	Mechanical energy of mass loss due to stellar evolution (12)
ECDOT	Energy of velocity kick due to stellar evolution
ECH	Binding energy of chain
EBINP	Primordial KS binary energy (1)
EBINN	Energy of new KS binary formed by dynamics (2)
EESCS	Single escaper mechanical energy (4)
EESCPB	Binding energy of primordial KS binary escapers (5)
EESCPC	Mechanical energy of center mass of primordial KS binary escapers (6)
EESCNB	Binding energy of new formed KS binary escapers (7)
EESCNC	Mechanical energy of center mass of new formed KS binary escapers
	(8)
	Scaling factors
RBAR	PC
TSCALE	Myr
TSTAR	Myr

Tabelle 17: Definition of parameters

VSTAR	km/s
RAU	AU
ZMBAR	Solar mass
SU	Solar radius
	Astronomical units
R*	Solar radius
L*	Solar luminosity
 	Solar mass
	Counters
NTOT	Total number of particles (include all binary component single star and
	center mass)
N	Total number of stars (binary count as two stars)
NS	Single star number
NPAIRS	Number of KS regularization particles
NMERGE	Number of Mergers (stable triples)
NZERO	Initial particle number (2* binaries + singles, initial N)
NB0	Primordial binary number
	For stars
I	Index of star (position in particle data array)
NAME	Identification of individual star, it's constant and unique value for each
	star (exclude un-physical particles like center mass and ghost) during
	whole simulation
K*	KSTAR type, see Table
Μ	Mass of star
X(1:3)	Three dimension position
V(1:3)	Three dimension velocity
DM	Current mass loss due to stellar evolution
DMA	Accumulated mass loss due to stellar evolution
STEP	Irregular time step of star
STEPR	Regular time step of star
ZKIN	Kinetic energy
POT	Potential
NB	Neighbor number
RNB	Neighbor radius
RHO	Mass density of individual star calculated by nearest 5 neighbors, (only
	avaiable for particles inside core radius
	Stellar evolution of star
RS	star radius
L	luminosity
Teff	effective temperature
ROT	angular velocity of star
	For binaries
SEMI	semi-major axis
ECC	eccentricity
PERI	Pericenter distance

R12	distance between two members of binary
RI	distance to density center
VI	velocity of center mass
Р	Orbit period
I1/I2	Index for binary component 1/2 (Not always equal name)
ICM	Index for center mass particle (Not always equal name)
NP	perturber number
Н	energy per unit mass
EB	Binary energy: M(I1)*M(I2)/M(ICM)*H
GAMMA	Perturbation to KZ binary
IPAIR	Index for binary
STEP(I1)	KS time step of binary
TC	circularization timescale for current pericenter
FLAG-PB	Primordial binary indicator1: Primordial bianry; 0: New binary
INEW	Index of new star generated by binary collision or coalescence
	For hierarchical systems
IM	merger index
IMC	Number count of current merger
INPAIR	Index of inner binary
INCM	Inner binary center mass index
NAME(IM)	Merger center mass name
I1/I2	Inner binary two component indexs
I3	Outer particle index
ECC0	Inner binary orbit eccentricity
ECC1	Outer orbit eccentricity
EB0	Inner binary energy
EB1	Outer orbit energy
P0	Inner binary orbit period
P1	Outer orbit period
R12	Inner binary components seperation
RIN3	Seperation between inner center mass and outer component
TG	Inner orbit eccentricity growth timescale
ECCMIN	Minimum eccentricity of inner binary orbit
ECCMAX	Maximum eccentricity of inner binary orbit
PERIM	smallest pericenter distance of outer particle orbit
PCR	Stability triple system criterion for PERIM (assess.f), the real stability
	criterion is more complicated and depend on the ECC1
SEMI0	Inner binary orbit semi-major axis
SEMI1	Outer orbit semi-major axis
INA	Inclination angle in unit degree
FLAG-H	Hierarchical system indicator1: merger, triple, chaotic binary, tidal
	circularization binary; 0: normal binary
	For quadriple systems
OCM	Outer binary center mass index
OCPAIR	Index of outer binary

I3/I4	Outer binary two component index
ECC2	Outer binary eccentricity
EB2	Outer binary energy
SEMI2	Outer binary orbit semi-major axis
R34	Outer binary components seperation
DP34	Difference potential correction for the outer binary
	For chain
IC	Chain index
NCH	Number of chain members
ECH	Total energy of perturbed system (N-body interface)
NP	Perturbers of chain
ENERGY	Total energy of chain
RSUM	Sum of all chain distances
RGRAV	Gravitational radius ((sum M(I)*M(J))/ABS(ENERGY))
TCR	Local crossing time ((sum M(I))**2.5/ABS(2*ENERGY)**1.5)
RMAXS	Maximum size of unperturbed configuration
RIJ(i-j)	Distance between member i and j
ICM1	First binary index after termination
ICM2	Second binary index after termination
	For kick
M0	mass before kick
MN	mass after kick
VK	kick velocity after limit check
VI	Velocity before kick of kicked star in cluster
VF	Final velocity of kicked star in cluster
VK0	Kick velocity generated from Henon's method (Douglas Heggie
	22/5/97)
FB	Fallback ratio, VK = VK*(1-FB)
VESC	cluster escape velocity
VDIS	escape velocity from binary system: SQRT(2*M(ICM)/R12)

Tabelle 18: Notice for Table19

	File format
Header-*	The Header of file with line number *, the description of it is shown in
	the right cell.
H-Label-*	Content labels are shown at the line number *, data begin from the next
	line
F-Label	Content labels are shown at the beginning of each line
I-Label	Content labels are shown before each data
N-Label	No labels in file
	Frequency (freq.)
Tevent	Output when event is triggered
T_0	Output during initialization
ΔT_{out}	Output time interval (input parameter DELTAT)

ΔT_{adj}	Adjust time interval (input parameter DTADJ)
ΔT_{HR}	Stellar evolution output time interval (input parameter DTPLOT)
NFIX	Frequency of output (input parameter)
	option
#[num]	KZ option [num]
	logical or
&&	logical and
CHAIN	Use chain: $#15 > 0\&\&(#30 > 0 #30 = -1)$
USE_GPU	switch on GPU during compiling code
USE_HDF5	switch on HDF5 during compiling code

Table19 show all output files of *NBODY6*++. The filename will be named as "[name].[unit]". The first column [name] with suffix "*" means this file will output as seperated snaphshots splitted by Time[NB] (shown as suffix of file name).

name	unit	code	option	freq.	content
conf*	3	output.F	#3 > 0	ΔT_{out}	Basic data snapshots
				×	
				NFIX	
Heade	er-1	NTOT, MC	DEL, NRUN	I, NK	
Heade	er-2	Time[NB],	NPAIRS, R	BAR, ZM	IBAR, RTIDE, TIDAL4, RDENS(1:3),
		Time/TCR,	TSCALE, V	'STAR, R	C, NC, VC, RHOM, CMAX, RSCALE,
		RSMIN, D	MIN1		
N-La	bel	M, RHO, X	XNS, X(1:3),	V(1:3), P	OT, NAME (All in NB unit)
Notice th	ne file i	s unformatte	d (binary file). Each ite	em output continually from 1 to NTOT.
All items	s outpu	t in one line	after two hea	der lines.	
NK : Th	e numb	er of parame	ter in Heade	r-2, right	now is always 20
TCR : C	rossing	time			
RHOM :	maxin	num mass de	nsity / half n	nass mear	n value
CMAX :	Maxir	num number	density / hal	f mass m	ean value
RSMIN	: Small	est neighbor	radius obtain	ned in las	t output (output.F) time
DMIN1	: Small	est two body	distance		
XNS : T	he fifth	nearest neig	hbor distanc	e, (only a	vaiable for particles inside core radius
degen	4	degen.f	# 9 ≥ 3	Tevent	Binary with degenerate stars
Heade	er-1	RBAR, $\langle M$	$\langle [M^*], M1[N$	//*], TSC	ALE, NB0, NZERO
H-Lab	el-2	ICASE, T	ime[Myr], S	SEMI[AU], ECC, PERI/RS, P[days], RI[PC],
		M(I1)[M*]	, M(I2)[M*],	K*(I1),K	K*(I2),K*(ICM), NAME(I1),NAME(I2)
ICASE:	3: norn	nal binary; 4:	CE binary;	5: physica	al collision binary
PERI/RS	S: Peric	enter / maxir	num stellar r	adius of t	wo members
lagr	7	lagr.f	# 7 ≥ 3	ΔT_{out}	Lagrangian radii, average mass, ave-
					rage velocity, velocity dispersion out-
					put (Calculation of Lagrangian radii
					use initial total mass of cluster)
Heade	er-1	Labels and	columns nur	nber for e	each output

Tabelle 19: Output file information)

H-Labe	el-2	$R_{lagr}, R_{lagr}, \sigma_r^2, \sigma_r^2, \langle V_{rot} \rangle$	s, $R_{lagr,b}$, $\langle M_{lagr,b} \rangle$ (All in NB	$\langle I \rangle, N_{Shell},$ unit)	$\langle V_x \rangle, \langle V_y \rangle, \langle V_z \rangle, \langle V \rangle, \langle V_r \rangle, \langle V_t \rangle, \sigma^2,$
For each	items a	above, there	are 18 colum	ns with di	ifferent mass fraction(%): 0.1, 0.3, 0.5,
1, 3, 5, 1	10, 20,	30, 40, 50,	60, 70, 80, 9	90, 95, 99	, 100 and inside core radius (exclude
$R_{lagr,s}, R_{lagr,s}$	lagr,b)				
R _{lagr} : La	grangia	n radius			
Rlagr,s: Si	ingle st	ar Lagrangia	n radius		
$R_{lagr,b}$: K	Z bina	ries Lagrang	ian radius		
$\langle M \rangle$: ave	rage m	ass of a sphe	rical shell de	fined by I	R _{lagr}
$\langle V_{x/y/z} \rangle$:	mass w	eighted aver	age velocity	in x/y/z d	irection within a shell
$\langle V_t \rangle$: mas	ss weig	hted average	tangential ve	elocity wi	thin a shell
$\langle V_r \rangle$: mas	ss weig	hted average	radial veloc	ity within	a shell
σ^2 : mass	weigh	ted velocity	dispersion sq	uare with	in a shell
σ_r^2 : mass	weigh	ted radius ve	locity disper	sion squa	re within a shell
σ_t^2 : mass	weigh	ted tangentia	l velocity dis	spersion s	quare within a shell
$\langle V_{rot.} \rangle$: m	ass we	ighted avera	ge rotational	velocity p	projected in x-y plane within a shell
bdat	8	ksin2.f	#8 > 0	Tevent	New hierarchical (B-S)-S binary in-
					formation
		ksinit.F	#8 > 0		New binary information
		ksterm.F	#8 > 0		End binary information
I-Lab	el	Time[NB],	NAME(I1)	NANE(I2), FLAG-PB, M(I1)[NB], M(I2)[NB],
		EB[NB], S	EMI[NB], R	12[NB], C	GAMMA[NB], RI[NB]
bdat*	9	bindat.f	$\#8 \ge 2$	ΔT_{out}	KS binary output
Heade	r-1	NPAIRS, 1	MODEL, NI	RUN, N,	NC, NMERGE, Time[NB], RSCA-
		LE[NB], R	FIDE[NB], F	RC[NB], T	fime[Myr], ETIDC[NB], 0
Heade	r-2	EBINP, EB	INN, E, EE	SCS, EES	SCPB, EESCPC, EESCNB, EESCNC,
		EMERGE,	ECOLL (All	in NB un	nit)
Heade	r-3	SBCOLL,	BBCOLL, Z	ZKIN, PO	T, EBINO, EBIN, ESUB, EMERGE,
		BE(3), ZM	ASS, ZMBIN	N, CHCOI	LL, ECOLL (All in NB unit)
H-Lab	el-4	NAME(I1)	NAME(I2)	, M1[M ³	*], M2[M*], E[NB], ECC, P[days],
		SEMI[AU]	, RI[PC], V	/I[km/s],	K*(I1), K*(I2), ZN[NB], RP[NB],
		STEP(I1)[N	NB], NAME(ICM), EC	CM[NB], K*(ICM)
ETIDC[]	NB]: es	cape energy	due to tidal f	orce	
SBCOLI	L: The o	lifference of	binding ener	gy of inne	er binary at the end and begin of unper-
turbed tri	iples				
BBCOLI	L: The	difference of	f binding ene	ergy of in	ner binary at the end and begin of un-
perturbed	l B-B c	uadruples			
ZMBIN	: Total	KS binary m	ass		
CHCOL	L: The	difference of	binding ene	rgy of inn	er binary at the end and begin of chain
dat	10	start.F	#22 = 1	T_0	Basic data after initialization
N-lab	el	M[NB], X(1:3)[NB], V((1:3)[NB]	
esc	11	escape.f	#23 = 2,	ΔT_{adi}	escape star output
			4	uu j	
H-Labe	el-1	Time[Myr]	, M[M*], EE	SC, VI[kı	m/s], K*, NAME
EESC: d	imensio	onless escane	energy		
		p	- 01		

hiarch	12	hiarch.f	#18 = 1,	Tevent	New/End stable hierarchical system
Heade	r_1	RBAR /M	3 \[M*] M1[N	/ //*1	ALE NB0 NZERO
F-L al	-1 Del	$\frac{\text{KDAK}, \ \text{M}}{\text{Time}}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{1}{100}$	CC1 PERIO PERIOM P1/PO
I'-Lai		M(INCM)	M(13) PCP	SEMIO N	M(INCM)/M > MR INA NAME(I1)
		NAME(12)	$\frac{M(13)}{ME(13)}$) $\mathbf{K} * (\mathbf{IN})$	(M) = CC0 = CCMIN = CCMAX
		$\mathbf{K} \times (\mathbf{I}1) \mathbf{K} \times (\mathbf{I}1) \mathbf{K}$	$(12) \mathbf{PSM}(1)$), $\mathbf{X}^{*}(\mathbf{IIN})$	unit)
E Lai	a 1	$\mathbf{K}^{(11)}, \mathbf{K}^{(11)}$	(12), KSW(P)		$\mathbf{U}_{\mathbf{H}}(\mathbf{r})$
I'-Lai		MA(INCM) NKI NKE	ECCO, I	S NAME(I2) (All in NB unit)
	Innor h	inory porioo	tor distance	, INFAIR	, NAME(12) (All III ND ullit)
DEDIOM		n hinomy mini		ator distor	
	. IIIIe	of two mon	hum pericer	r hinomy (
DSM · m	iss rain	n staller red	iders of two m	i Ulliary (> 1
	Domina	lli stellar rau	us of two me	d of more	inner binary
NKI Or		h or the inner	ary at the en	d of merg	a life of moreor over the period of inner
INKI: Of	on nun	ainning of m	offiary have	during th	e me of merger over the period of inner
	the be	giinnig of in mhar tha inn	erger	vo durina	the life of margar over the period of
INNF: U	ron nu	the end of m	er binary na	we during	, the fife of merger over the period of
coll	13	m1x.f	$\#19 \ge 3$	Tevent	Mixed star (physical collision of bina-
					ry without evolved stars) information
Heade	r-l	RBAR, $\langle M$	$\left M^* \right , M1[N]$	A*], TSC.	ALE, NB0, NZERO
H-Lab	el-2	TIME[NB]	, NAME(II), NAM	$E(I2), K^*(I1), K^*(I2), K^*(INEW),$
		M(I1)[M*]	, M(I2)[M	*], M(I	NEW)[M*], DM[M*], RS(I1)[R*],
		RS(I2)[R*]	, RI/RC, R12	2[R*], EC	C, P[days]
shrink	14	shrink.f		Tevent	Diagnostics for shrink regular time
					step when high velocity star coming
F-Lat	bel	I, RN, FI/F	J, DT, STEP	R (All in	NB unit)
RN: Nex	t dista	ice from high	h velocity sta	r after D'	
FI/FJ: fo	rce at i	ninimum dis	tance / curre	nt force	
DT: eval	uated t	ime of minin	num approac	h and trur	ncate to next time
mix	15	mix.f	$\#19 \geq 3$	Tevent	Mixed star information for the case
					NS/BH form
F-Lat	bel	K*(I1), K*	(I2), K*(INE	EW), M(I1	1)[M*], M(I2)[M*], M(INEW)[M*]
hirect	16	hirect.f	#27 = 2	Tevent	Diagnostics for rectification of hierar-
			(hi-		chical binary due to the internal ener-
			grow.f)		gy change of system.
			#34 > 0		
			(brake2.f)		
			#28 > 0		
			(brake3.f)		
F-Lat	bel	Time[Nb],I	NAME,K*,E	CC,R12/S	SEMI,H,DB,DH/H
H: inner	binary	energy			
DM: cha	nge of	binding ener	зy		
		ksrect.f		Tevent	Diagnostics for rectification of KS or-
					bit.
F-Lal	bel	Time[NB].	IPAIR, R12/	SEMI, H	, GAMMA, DB, DH/H

oniev	1/	Uniev.1	#9 2 2	1 event	binary change type
H-Labe	el-1	Time[Mvr]	NAME(I	1). NAN	I = 100000000000000000000000000000000000
11 200		M(I1)[M*]	$M(I2)[M^{3}]$	*1. RS(I	$1)[R^*]$, RS(I2)[R^*], RI[PC], ECC.
		SEMI[R*].	P[days]. IO	COLL	·//··], ····/··], ···/·], ···/·], 200,
IOCOLL	: Type	of stage, nee	ed table in th	e future	
phin	18	binout f	#8 > 0	$\Delta T_{\rm event}$	Diagnostics for the primordial binary
pom	10	omoutin	10 > 0		which change members
I-Lab	el	Time[NB].	NAME(I1)). NAMI	E(I2), Flag-PB, Flag-H, $M(I1)[NB]$,
		M(I2)[NB]	, EB[NB], S	EMI[NB]	, ECC, GX, RI[NB], VR[NB]
GX: max	imum	(near apocer	nter) perturba	ation	
VR: radia	al velo	city	· •		
bwdat*	19	bindat.f	#8 > 2		Wide Non-KS bianry output
Heade	r-1	Time[NB],	Time[Myr],	N	
H-Labe	el-2	NAME(I1)	, NAME(I2)	, M1[M*], M2[M*], E[NB], ECC, P[days], SE-
		MI[AU], R	I[PC], VI[kn	n/s], K*(I	1), K*(I2)
symb	20	mdot.F	#19 > 3	Tevent	Symbiotic stars information
F-Lab	el	NAME, K*	*, Time[Myr]], M[M*],	SEMI[R*], DM, DMA??
JC: Com	panion	star index	-		
	· ')· Mas	s loss from s	stellar wind o	of compan	ion star
DMX(JC). ITIUS				
DMX(JC DMA: A	ccretio	n mass from	companion	star	
DMX(JC DMA: A rocdeg	$\frac{\text{ccretio}}{22}$	n mass from roche.f	$\frac{1}{34} > 0$	star T_{event}	Roche overflow binary involving de-
DMX(JC DMA: A rocdeg	$\frac{\text{ccretio}}{22}$	n mass from roche.f	$\begin{array}{ c c }\hline companion \\ \hline \#34 > 0 \\ \hline \end{array}$	star T_{event}	Roche overflow binary involving de- generate objects
DMX(JC DMA: A rocdeg F-Lab	ccretio 22 pel	n mass from roche.f NAME(I1)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	star T_{event}), K*(I1),	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-
DMX(JC DMA: A rocdeg F-Lab	ccretio 22 pel	n mass from roche.f NAME(I1) me[Myr], S	companion #34 > 0 , NAME(I2) SEMI[R*], P	star T_{event}), K*(I1). [days], M	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr]
DMX(JC DMA: A rocdeg F-Lab MD: Mas	ccretio 22 pel ss loss	n mass from roche.f NAME(I1) me[Myr], S rate	a companion #34 > 0 , NAME(I2) SEMI[R*], P	star T_{event}), K*(I1), [days], M	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr]
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen	$\frac{\text{ccretio}}{22}$ $\frac{1}{\text{ccretio}}$ $\frac{1}{\text{ccretio}}$	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1	star T_{event}), K*(I1). [days], M T_0	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen-
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen	$\frac{1}{22}$	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3)	star T_{event} (days], M T_0	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen	$\frac{\text{ccretio}}{22}$ $\frac{\text{bel}}{\text{ss loss}}$	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 ≥ 3) &&	star T_{event}), K*(I1), [days], M T_0	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen	ccretio 22 pel ss loss 23	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3) && #42 = 6	star T_{event}), K*(I1) [days], M T_0	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution
DMX(JC DMA: A rocdeg F-Lab MD: Mas ibeigen F-Lab	$\frac{1}{22}$	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3) && #42 = 6 M(ICM)[M*]	star T_{event}), K*(I1), [days], M T_0 , ECCI, E	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen F-Lab ITER: ite	ccretio 22 pel ss loss 23 pel eraction	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3) && #42 = 6 M(ICM)[M*] nerate param	star T_{event}), K*(I1). [days], M T_0 I, ECCI, E neter that s	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen F-Lab ITER: itte ECCI: in	ccretio 22 pel ss loss 23 pel eraction itial ec	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3) && #42 = 6 M(ICM)[M*] nerate paramom thermal d	star T_{event}), K*(I1). [days], M T_0 , ECCI, E the ter that so	Roche overflow binary involving degenerate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution SCCC, SEMII, SEMIC, P[days] satisfy the input criterions n
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen F-Lab ITER: ite ECCI: in ECCCI: c	ccretio 22 pel ss loss 23 pel eraction itial ec ircular	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri	companion $ #34 > 0$ $ #34 > 0$ $, NAME(I2)$ $ SEMI[R*], P$ $ (#8 = 1 #8 \ge 3)$ $ & \& \& \\ #42 = 6$ $ M(ICM)[M*]$ nerate paramom thermal discretes the second discrete the second discretes the second	star T_{event}), K*(I1). [days], M T_0 , ECCI, E leter that solution	Roche overflow binary involving degenerate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution SCCC, SEMII, SEMIC, P[days] satisfy the input criterions n
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: it	ccretio 22 22 22 23 23 23 23 23 23 23 23 23	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, N n times to ge centricity fro ized eccentri emi-major at	companion#34 > 0#34 > 0, NAME(I2)SEMI[R*], P(#8 = 1 \parallel #8 \geq 3)&* = 6M(ICM)[M*]nerate parameterom thermal discipleicityxis generated	star T_{event}), K*(I1). [days], M T_0 I, ECCI, E listribution I by ECCO	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution ECCC, SEMII, SEMIC, P[days] satisfy the input criterions n
DMX(JC DMA: A rocdeg F-Lab MD: Mas ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC:	ccretio 22 pel ss loss 23 pel eraction itial ec ircular nitial s circula	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri emi-major a: rized semi-n	companion #34 > 0 #34 > 0 SEMI[R*], P $(\#8 = 1 \parallel \ \#8 \ge 3)$ && #42 = 6 M(ICM)[M*] nerate paramom thermal discity xis generated najor axis generated	star T_{event}), K*(I1), [days], M T_0 , ECCI, E neter that s listribution I by ECCC nerated by	Roche overflow binary involving de- generate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti- D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigen- evolution ECCC, SEMII, SEMIC, P[days] satisfy the input criterions n
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC: coal	ccretio 22 pel ss loss 23 pel eraction itial ec ircular nitial s circula 24	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri emi-major a: rized semi-n coal.f	companion#34 > 0#34 > 0, NAME(I2)SEMI[R*], P(#8 = 1 #8 \geq 3)&* = 6M(ICM)[M*]nerate parameterom thermal dicityxis generatedacityxis generatedmajor axis generated#19 \geq 3	star T_{event}), K*(I1). [days], M T_0 I, ECCI, E listribution I by ECCC nerated by T_{event}	Roche overflow binary involving degenerate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution ECCC, SEMII, SEMIC, P[days] satisfy the input criterions n 0 and period y ECCC and period binary coalescence (Stellar type with cores and circular orbit)
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC: coal Heade	ccretio 22 pel ss loss 23 pel eraction itial ec ircular nitial s circula 24 r-1	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri emi-major a: rized semi-n coal.f RBAR, $\langle M \rangle$	companion #34 > 0 #34 > 0 SEMI[R*], P $(\#8 = 1 \parallel \ \#8 \ge 3)$ && #42 = 6 M(ICM)[M*] nerate paramon om thermal discity xis generated najor axis ge $\#19 \ge 3$ (,M1,TSCAL	star T_{event}), K*(I1), [days], M T_0 [days], M [days], M [days], M [table], ECCI, E [table], E,NB0,N	Roche overflow binary involving degenerate objects K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution SCCC, SEMII, SEMIC, P[days] satisfy the input criterions n D and period y ECCC and period binary coalescence (Stellar type with cores and circular orbit) IZERO
DMX(JC DMA: A rocdeg F-Lab MD: Ma: ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC: coal Heade H-Lab	$\frac{ccretio}{22}$ $\frac{ccretio}{22}$ $\frac{ccretio}{23}$ $\frac{ccretio}{23}$ $\frac{ccretio}{23}$ $\frac{ccretio}{23}$ $\frac{ccretio}{crcular}$ $\frac{ccretio}{crcular}$ $\frac{ccretio}{crcular}$ $\frac{ccretio}{24}$ $\frac{ccretio}{24}$	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri emi-major at rized semi-n coal.f RBAR, (<i>M</i>) TIME[NB]	companion #34 > 0 , NAME(I2) SEMI[R*], P (#8 = 1 #8 \geq 3) && #42 = 6 M(ICM)[M*] nerate paramon thermal discity xis generated najor axis ge #19 \geq 3),M1,TSCAL J, NAME(I1)	star $ \begin{array}{c c} \hline T_{event} \\ \hline \hline \\ \hline \\$	Roche overflow binary involving degenerate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution ECCC, SEMII, SEMIC, P[days] satisfy the input criterions n D and period y ECCC and period binary coalescence (Stellar type with cores and circular orbit) ZERO (I2), K*(I1), K*(I2), K*(INEW), IQ-
DMX(JC DMA: A rocdeg F-Lab MD: Maa ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC: coal Heade H-Labe	ccretio 22 pel ss loss 23 pel eraction itial ec ircular nitial s circular 24 r-1 el-2	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, N n times to ge centricity fro ized eccentri emi-major at rized semi-n coal.f RBAR, (<i>M</i>) TIME[NB] COLL, M(companion#34 > 0#34 > 0, NAME(I2)SEMI[R*], P(#8 = 1 #8 \geq 3)&* = 6M(ICM)[M*]nerate paramonom thermal dicityxis generatedanjor axis ge#19 \geq 3 λ ,M1,TSCAL, NAME(I1)[11)[M*], M(star T_{event}), K*(I1). [days], M T_0 [days], M Interpret that set that s	Roche overflow binary involving degenerate objects , K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution ECCC, SEMII, SEMIC, P[days] satisfy the input criterions n 0 and period y ECCC and period binary coalescence (Stellar type with cores and circular orbit) ZERO (I2), K*(I1), K*(I2), K*(INEW), IQ-M(INEW)[M*], DM[M*], RS(I1)[R*],
DMX(JC DMA: A rocdeg F-Lab MD: Max ibeigen F-Lab ITER: ite ECCI: in ECCC: c SEMII: i SEMIC: coal Heade H-Labe	ccretio 22 pel ss loss 23 pel eraction itial ec ircular nitial s circula 24 r-1 el-2	n mass from roche.f NAME(I1) me[Myr], S rate binpop.F ITER, I1, M n times to ge centricity fro ized eccentri emi-major a: rized semi-n coal.f RBAR, (<i>M</i>) TIME[NB] COLL, M(RS(I2)[R*]	companion#34 > 0#34 > 0, NAME(I2)SEMI[R*], P(#8 = 1 \parallel #8 \geq 3)&* = 6M(ICM)[M*]nerate parameterom thermal deficityxis generatedajor axis ge#19 \geq 3>,M1,TSCALI, NAME(I1)I1)[M*], M(I)I, RI/RC, R	star T_{event}), K*(I1), [days], M T_0 [days], M T_0 I, ECCI, E leter that so listribution I by ECC(nerated by T_{event} LE,NB0,N), NAME I2)[M*], 12[R*], I	Roche overflow binary involving degenerate objects K*(I2), M(I1)[M*], M(I2)[M*], Ti-D(I1)[M*/Myr], MD(I2)[M*/Myr] Initial binary data by using eigenevolution SCCC, SEMII, SEMIC, P[days] satisfy the input criterions n D and period y ECCC and period binary coalescence (Stellar type with cores and circular orbit) IZERO (I2), K*(I1), K*(I2), K*(INEW), IQ-M(INEW)[M*], DM[M*], RS(I1)[R*], ECC, P[days], RCOLL[R*], EB[NB],

VINF: Infinite velocity for hyperbolic coalescence								
sediag	25	unpert.f	#27 > 0	T _{event}	Diagnostics for the stellar evolution			
					next look-up time of unpert KS			
F-Lal	bel	IPAIR, K*(I1), K*(I2), K*(ICM), TEVNXT[NB], STEP(I1)[NB] (No						
		more output when NWARN \geq 1000)						
TEVNX	T: Nex	t time to che	ck stellar evo	olution				
highv	29	hivel.f		Tevent	Diagnostics for high-velocity particle			
					added or removed from LISTV			
F-Lal	bel	(REMOVE) Time[NB], I, NAME, RI(NB), VI(NB)						
F-Lal	bel	(ADD NS, terminated KS/chain) Time[NB], NHI, I, NAME, K*,						
		VI[NB], RI[NB], STEP[NB]						
F-Lal	bel	(ADD fast single) Time[NB], NHI, NAME, IPHASE, VI[NB], RI[NB],						
		STEP[NB]						
F-Lal	bel	(ADD hyperbolic two-body motion) Time[NB], NHI, NAME(I1), NA-ME(I2), IPHASE, RIJ[NB]						
NHI: hig	gh-velo	city particle	number					
IPHASE	E: Interr	nal status of c	code (check i	nbody6.F	for detail)			
global	30	output.F		ΔT_{out}	Globar features of cluster and coun-			
					ters			
H-Lab	el-1		1	1				
lagr1	31	lagr2.f	# 7 ≥ 5	ΔT_{out}	Two mass group systems Lagrangian			
					radii (First group)			
N-La	bel	Time[NB], <i>R_{lagr}</i> [NB] (mass fraction: 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4,						
		$0.5, 0.625, 0.75, 0.9$ (Here calculation of R_{lagr} use the current total mass)						
lagr2	32	lagr2.f	#7 ≥ 5	ΔT_{out}	Two mass group systems Lagrangian			
					radii (Second group)			
N-La	bel	see Unit 31						
ns	33	degen.f $\#9 \ge 3$ T_{event} Neutron stars(never used)						
F-Lal	F-Label		I, NAME, IFIRST, K*, Time[Myr], VI[km/s]					
bh	34	degen.f	n.f $\#9 > 3$ T_{event} Black holes(never used)					
F-La	bel	I NAME IFIRST K* Time[Myr] VI[km/s]						
sediag	r Luber		$\frac{1}{2} + \frac{1}{2} + \frac{1}$		Diagnostics for common envelop type			
sculag	50	experz.r	$\frac{11}{88}$	1 event	change			
			Chain		change			
N-La	bel		Chuin					
		mix.f	#19 > 3	Tavant	Diagnostics for mixed stars			
N-Label								
		trflow.f	#19 > 3	Tevent	Diagnostics for iteration convergency			
				evenu	check			
N-Label								
stellar evolution health check								
stellar ev	volutioi	i nearth chec	ĸ					
hbin	39	adjust.F	$\frac{1}{49} = 1.3$	ΔT_{out}	The hardest binary below ECLOSE			
hbin F-Lal	39 bel	adjust.F	1,3 MAME(I1).	ΔT_{out} NAME(I	The hardest binary below ECLOSE 2), K*, NP, ECC, SEMI[NB]. P[days].			

data	40	custom_	USE_	#47	HDF5 or CSV output of basic data		
.h5part		output.F	HDF5				
			&&				
			#46 > 0				
		NAME, TIME[NB], X(1:3)[NB], V(1:3)[NB], M[NB], F[NB], FD[NB],					
		K*, RHO[NB], PHI[NB], L[L*], RS[R*], Teff[K], MCORE[M*], RS-					
		CORE[R*]					
RHO: Lo	ocal de	nsity					
PHI: pot	ential						
MCORE	: Stella	r core mass					
RSCORI	E: Stell	ar core radiu	S				
nbflow	41	fpoly0.F	USE_GPU	T_0	Diagnostics for neighbor list overflow		
					from GPU regular force initialization		
F-Lat	bel	NSTEPR, I	NAME, NB,	RNB[NB], RI[NB]		
		util_gpu.F	USE_GPU	Tevent	Diagnostics for neighbor list overflow		
					from GPU regular force calculation		
I-Lab	el	I,NAME, NNPRE, NBNEW, RNB[NB], RI[NB], Time[NB]					
NBPRE:	previo	us neighbor	number				
NBNEW	: new i	neighbor nun	nber that cau	se overflo	W		
ibcoll	42	binpop.F	$#8 = 1, \ge$	T_0	Diagnostics for the binary physical		
			3		collision cases when initialize primor-		
					dial binaries		
I-Label		I1, M(I1)[M*], M(I2)[M*], ECC, SEMI[AU], PERI[R*], RS(I1)[R*],					
		RS(I2)[R*]					
sediag	43	mdot.F	#19 ≥ 3	Tevent	Diagnostics of warning when stellar		
					radius expand more than 1.5x		
F-Lat	F-Label I, NAME, Time[Myr], DT[Myr], K*0, K*N, M0[M*], MN[M*],						
		RS0[R*], F	RSN[R*]				
K*0: pre	vious s	tellar type					
K*N: new stellar type							
M0: initi	al stell	ar mass					
MN: cur	rent ne	w stellar mas	SS				
RS0: pre	vious s	tellar radius					
RSN: ne	w stella	ar radius					
hinc	44	induce.f	#27 > 0	Tevent	Information of high inclinations and		
					$TC2 < 10^{7}$ yrs of hierarchical binary		
F-Label		ECC0, ECCMIN, ECCMAX, K*(I1), K*(I2), K*(ICM), SEMI0[NB],					
		PERIM[NB], IN, TG[Myr], TC[Myr], TCM[Myr], Time[Myr]					
IN: Indicator of inclination: $1 + AIN[rad]*360/(2*pi*22.5)$, where AIN is inclination an-							
gle							
I CIVI: circularization timescale for smallest pericenter							
mbh	45	bhplot.f	#24 = 1	ΔT_{BH}	Mass black hole information		
H-Lab	el-1	STAT, Ti	me[Myr], I	BH, X(1:3)[PC], V(1:3)[km/s], NB, XA-		
		VE(1:3)[AU], VAVE(1:3)[km/s], DEN[M*/PC ³], RIJMAX[PC],					
		VSIGMA($1:3)[km^2/s^2]$				
Notice th	Notice the XAVE, VAVE, DEN, VSIGMA is not accurate due to the neighbor criterion						

STAT: show whether black hole is in binary system or single IBH: Index of massive black hole XAVE: density center vector of black hole neighbors (relative to black hole velocity) VAVE: average velocity vector of black hole neighbors (relative to black hole velocity) DEN: local density of black hole calculated by neighbors within RNB (exclude black hole mass) RIJMAX: maximum distance from neighbor star to black hole VSIGMA: 3-dimensional velocity dispersion of black hole neighbors (relative to black hole velocity) mbhnb 46 bhplot.f #24 = 1 ΔT_{RH} Mass black hole neighbor information Header-1 Time[Myr], NB N-Label NAME, M[M*], XREL(1:3)[AU], RIJ[AU], VREL(1:3)[km/s], K* XREL: position vector relative to black hole RIJ: distance to black hole VREL: velocity vector relative to black hole velocity #14 = 3Initialization of circular velocity in the itid3 52 xtrnl0.F T_0 plane for galaxy tidal force F-Label VC[km/s], RI[KPC] VC: circular velocity hypcep 54 Close encounter for hyperbolic motiksint.f $\#19 \ge 3$ Tevent on (pericenter $< 5.0 \times$ Maximun stellar radius of two stars F-Label Time[NB], NAME(I1), NAME(I2), K*(I1), K*(I2), VINF[km/s], $RCAP[R^*], RX[R^*], PERI[R^*]$ VINF: Infinite velocity of encounter RCAP: Capture distance of hyperbolic encounters (binary will form) RX: Maximum stellar radius of two stars hypcec 55 ksint.f $#19 \ge 3$ Close encounter for hyperbolic moti-Tevent on (physical collision case) Time[NB], IPAIR, NAME(I1), NAME(I2), K*(I1), K*(I2), K*(ICM), F-Label VINF, ECC, H[NB], R12[NB], SEMI[NB], PERI[NB], M(I1)[NB], M(I2)[NB], M(ICM)[M*], RI[RC], VI[km/s], RHOD, RS(I1)[R*], RS(I2)[R*], RCAP[R*], RX/PERI, RCOLL/PERI RHOD: Density weighted average density $\Sigma RHO^2 / \Sigma RHO^2$ RCOLL: If #27 > 2 relativistic collision criterion, else is normal collision criterion RX: Maximum stellar radius of two stars Moments of Inertia ?? *fort 60 ellan.f #49 > 0 ΔT_{out} N-Label ?? Diagnostics for skip removal of chacirdiag 71 #27 > 0spiral.f Tevent os binary if this is member of single/double (stable quadruple) merger. NCHAOS, NAMEC, NAME(IM), NAME(I3) F-Label NCHAOS: Number of chaos binary NAMEC: Name for chaos binary

histab 73	impact.f	#15 > 0	Tevent	Diagnostics of checking Zare ex-				
			er en a	change stability criterion (exchange of				
				outer particle and inner member of bi-				
				nary), but the slingshot still can hap-				
				pen, thus not triple system stability				
				criterion.				
F-Label	Time[NB].	M(I3)/M(IN)	ICM), EC	CO. ECC1. SEMIOINBI. PERIMINBI.				
	PCR[NB],	PCR[NB], TG[Myr], SP, INA[deg], K*						
SP: >= 1, nc	exchange; <	change; < 1, will be exchange						
cirdiag 75	decide.f	#27 = 2	Tevent	Diagnostics output for large eccentri-				
				city (> 0.9) during merger decision				
				(deny stable triple forming if circula-				
				rization timescale is short).				
F-Label	F-Label NAME, Time[NB], ECC0, ECC1, EMIN, EMAX, ECCD[1/N							
	EDT[NB],	EDT[NB], TG[Myr], TC[Myr], EDAV[1/Myr], PERIM[RSM]						
ECCD: eccer	tricity change	rate						
EDAV: average	ge eccentricity	change rate						
RSM: maxim	um stellar radi	us of two sta	rs					
EDT: Tidal c	rcularization t	imescale for	current ec	centricity				
kscrit 77	chmod.f	#16 > 2	Tevent	Diagnostics for increasing or de-				
		&&		creasing regularization parameters in				
		CHAIN		chain				
F-Label	Time[NB],	Time[NB], KSMAG, GPERT, RMIN, RIJ[NB]						
KSMAG: indicator of increasing and decreasing times			mes					
GPERT: dime	ensionless pert	urbation of cl	hain					
RMIN: distar	ice criterion fo	r regularizati	on (also is	s input parameter)				
RIJ: distance	between chain	center mass	and pertu	rber				
chstab 81	chstab.f	CHAIN	Tevent	New hierarchical system with stability				
			evenu	condition for bound close pair (RB $>$				
				semi) (form from 4th body escape or				
				perturber make it stable).				
I-Label	TIMEC. I	TIMEC. RIINBI. NAME(I3). M(I3)/M(INCM). ECCO. ECCMAX						
	ECC1, SEI	ECC1, SEMI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]						
	cstab2.f	CHAIN	Tavant	Check hierarchical stability condition				
			- eveni	(SEMI1 > 0 \Rightarrow ECC1 < 1).				
N-Label	TIMECIN	B1. RIINB1.	NAME	I3). ECC0. ECC1. ECCMAX. SE-				
	MI0[NB].	MI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]						
	cstab3.f	CHAIN	Tevent	Continue chain integration if outer or-				
			evenu	bit unstable or large pert.				
N-Label	TIMECIN	TIMECINBI, RIINBI, NAME(I3), ECCO ECCI ECCMAX S						
	MI0[NB].	MI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]						
	cstab4.f	CHAIN	Tovant	Check hierarchical stability condition				
			-evenu	for bound close pair.				
N-Label	TIMECIN	B1. RIINB1	NAME	I3). ECC0. ECC1. ECCMAX. SE-				
	MI0[NB]	SEMI1[NR]	PCR/PFI	RIM. INA[deg]				
		hen chain formed						

F-Label		Time[NB],	NAME(I1), NAM	IE(I2),	M(INEW),	ECC,	P[days],	
		P(I1)[days], P(I2)[days]							
wdcirc	95	spiral.f	#27 > 0	Tevent	Diagnostics for recent WD as the se-				
					cond component of binary system in-				
					volving	g tidal circular	rization		
F-Lat	F-Label		NAME(I	2), NA	NAME(I1), K*(I1), ROT(I1)[NB],				
		ROT(I2)[NB], (motion), SPIN(I2)[NB]							
(motion) : sqrt(M(ICM) / (RSM * SEMI)**3) [NB]									
*SPIN: spin of star ?									
cirdiag	96	hut.f $\#27 > 0$ T_{event} Diagnostics for reducing steps of inte-							
					gration equations for eccentricity and				
					angular	velocites of	f stars	(Equation	
					15.22 ii	n Sverre, 200	3's bool	()	
F-Label NSTEPS, IT, U, UD, DTAU (All in NB unit)									
NSTEPS: step number for integration									
IT: Iteration times for reduction									
U: KS vector U									
UD: KS vector UDOT									
DTAU: KS integration time step									

14 Python and IDL scripts

TODO

15 AMUSE

TODO

Literaturverzeichnis

- [1] Aarseth S.J. (1963): Mon. Not. Roy. Astron. Soc. 126, p223
- [2] Aarseth S.J. (1985): "Direct methods for N-body simulations", in: *Multiple Time Scales*, Brackbill J. & Cohen B. (eds.), Ch. 12, p377
- [3] Aarseth S.J. (1993): "Direct methods for N–body simulations", in: *Galactic Dynamics and N–body simulations*, Contopoulos G. et. al. (eds.), Symposium in Thessaloniki, Greece
- [4] Aarseth S.J. (1999a): Publ. Astron. Soc. Pac. 111, p1333
- [5] Aarseth S.J. (1999b): Celect. Mech. Dyn. Astron. 73, p127
- [6] Aarseth S.J. (2003): "Gravitational N–Body Simulations, Tools and Algorithms", Cambridge University Press, 430 pages, ISBN 0521432723
- [7] Aarseth S.J., Hénon M., Wielen R. (1974): Astron. Astrophys. 37, p183
- [8] Aarseth S.J., Zare . (1974): Celest. Mech. 10, p185
- [9] Ahmad A. & Cohen L. (1973): J. Comput. Phys. 12, p389
- [10] Cohn H. (1980): ApJ 242, p765
- [11] Dorband E.N., Hemsendorf M., Merritt D. (2003): J. Comput. Phys. 185, p484–511
- [12] Heggie D.C. & Mathieu R.D. (1986): "Standardised units and time scales", in: *The Use of Supercomputers in Stellar Dynamics*, Hut P. & McMillan S. (eds.), p233
- [13] Hénon M. (1971): Astrophys. Space Sci. 14, p151
- [14] Kustaanheimo P. & Stiefel E.L. (1965): J. für Reine Angewandte Mathematik 218, p204
- [15] Makino J. (1991a): Publ. Astron. Soc. Japan 43, p859
- [16] Makino J. (1991b): ApJ 369, p200
- [17] Makino J. & Aarseth S.J. (1992): Publ. Astron. Soc. Japan 44, p141
- [18] Makino J. & Hut, P. (1988): ApJ Suppl. 68, p833
- [19] Makino J., Taiji M., Ebisuzaki T., Sugimoto D. (1997): ApJ 480, p432–446
- [20] Mikkola S. (1997): "Numerical Treatment of Small Stellar Systems with Binaries", in: Visual Double Stars: Formation, Dynamics and Evolutionary Tracks, Docobo J.A., Elipe A., & McAlister H. (eds.), p269
- [21] Mikkola S. & Aarseth, S.J. (1990): Celest. Mech. Dyn. Ast. 47, p375
- [22] Mikkola S. & Aarseth, S.J. (1993): Celest. Mech. Dyn. Ast. 57, p439
- [23] Mikkola S. & Aarseth, S.J. (1996): Celest. Mech. Dyn. Ast. 64, p197
- [24] Mikkola S. & Aarseth, S.J. (1998): New Astronomy 3, p309

- [25] Neutsch W. & Scherer K. (1992): "Celestial Mechanics", Bibliographisches Institut, 484 pages, ISBN 3411154810
- [26] **Spitzer L. jr.** (1987): *Dynamical Evolution of Globular Clusters*, Princeton University Press, New Jersey, USA
- [27] Spurzem R. (1994): "Gravothermal Oscillations", in: Ergodic Concepts in Stellar Dynamics, Gurzadyan V.G. & Pfenniger D. (eds.), p170
- [28] Spurzem R. (1999): J. Comput. Appl. Math. 109, p407
- [29] von Hoerner S. (1960): Zeitschrift f. Astrophysik 50, p184–214
- [30] von Hoerner S. (1963): Zeitschrift f. Astrophysik 57, p47–82