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4 1 Introduction

1 Introduction

Gravity is an ever–present force in the Universe and is involved into the dynamics of all kinds
of bodies, from the tiny atom to the clusters of galaxies. At small spatial scales, its influence is
covered by other strong forces (e.g. magnetic, pressure, radiation induced), while on the very large
scale it becomes the most dominant power. In astrophysics, it governs thedynamical evolution
of many self–gravitating systems. Here, we concentrate on such systems that are dominated by
mutual gravitation between particles.

The numerical star-by-star simulation of a simple cluster containing some more than hundred
thousand members still places heavy demands on the available hard- and software. A balance has
to be found between two constraints: On one hand therealism, i.e. the input of profound physics,
inclusion of all astrophysical effects as well as the maintenance of the accuracy of calculations;
and on the other hand, theefficiency, i.e. the limitations given by the computational possibilities
and suitable codes to be finished in a reasonable time. Many different kinds of approaches have
been undertaken to suffice both:

• codes based on the direct force integration [2], [5], [6], see also:
http://www.sverre.
om/ ,

• statistical models, which themselves divide into several subgroups (Fokker–Planck approxi-
mation by [10]; Monte–Carlo method by [13]; Gas models by [27]),

• usage of high-performance parallel computers [28], [11],

• or the construction of special hardware devoted for these purposes (GRAPE [19], see also:
http://www.astrogrape.org/ and
http://www.
s.rit.edu/∼grape
luster/ .

The code NBODY6++ described in this manual is designed for an accurateintegration of many
bodies (e.g. in a star cluster, planetary system, galactic nucleus) based onthe direct integration of
the Newtonian equations of motion. It is optimal for collisional systems, where long times of
integration and high accuracy or both are required, in order to follow with high precision the
secular evolution of the objects.

NBODY6++ is a descendant of the family of NBODY codes initiated by SverreAarseth [4],
which has been extended to be suitable for parallel computers [28]. The basic features of the code
increasing the efficiency may be considered under four separate headings: fourth order prediction–
correction method (Hermite scheme), individual and block time–steps, regularization of close en-
counters and few-body subsystems, and a neighbour scheme (Ahmad–Cohen scheme). We briefly
describe these ideas in this booklet, while a detailed description can be foundin [3] as well as his
book [6].

While NBODY6++ is not that different from NBODY6 to justify a completely newname, the
user should, however, be aware that in order to make a parallelization of regular and irregular force
computations possible at all, some significant changes in the order of operations became necessary.
As a consequence, trajectories of the same initial system, simulated by NBODY6and NBODY6++
will diverge from each other, due to the inherent exponential instability and deterministic chaos in
N-body systems. Still one should always expect that theglobalproperties are well behaved in both
cases (e.g. energy conservation). While much effort is taken to keep NBODY6 and NBODY6++
as close as possible this is never 100% the case, and the interested should always contact Sverre
Aarseth or Rainer Spurzem if in doubt about these matters.
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This manual should serve as a practical starter kit for new students working with NBODY6++.
It is not meant as a complete reference or scientific paper; for that see the references and in parti-
cular the excellent compendium of Aarseth’s book on GravitationalN-Body Simulations [6].

Acknowledgements
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Seppo Mikkola, for their continuous support and work over the decades. Also, many students
and postdocs in Heidelberg and elsewhere have contributed towards development, debugging and
improving the software for the benefit of the community. This booklet was written at the Astrono-
misches Rechen–Institut Heidelberg under the supervision of Rainer Spurzem.
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2 Code versions

The development of the NBODY code has begun in the 1960s [1], though there exist some earlier
precursors [29], [30]. It has set a quasi-standard for the precise direct integration of gravitating
many-body systems. There exist several code groups (NBODY0–7, and a number of special im-
plementations) for different usage, some of which are rather of historical interest.

The NBODY6++ code is available publicly under
ftp://ftp.ari.uni-heidelberg.de/pub/staff/spurzem/nb6mpi/ .
In irregular intervals updates of the code are provided on this ftp-site. For those, who keep syn-
chronicity with NBODY6++, upgrades and bugfixes are explained and there is usually a special
README file detailing the changes.

The originalN–body codes can be accessed publicly via Sverre Aarseth’s ftp and web sites at
ftp://ftp.ast.
am.a
.uk/pub/sverre/ and http://www.sverre.
om/ .

A brief comparison of the code versions:

ITS: Individual time–steps
ACS: Neighbour scheme (Ahmad–Cohen scheme) with block time–steps
KS: KS–regularization of few-body subsystems
HITS: Hermite scheme integration method combined with hierarchical block time steps
PN: Post-Newtonian terms
AR: Algorithmic regularization

ITS ACS KS HITS PN AR
NBODY1 X

NBODY2 X X

NBODY3 X X

NBODY4 X X

NBODY5 X X X

NBODY6 X X X

NBODY7 X X X X X
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3 Getting started

The code NBODY6++ is written in Fortran and consists of about 300 files. Their functionality
was improved as well as new routines included all the way through the decades along with the
technological achievements of the hardware. The starting (main) routine is callednbody6.F and
begins as given in Figure 3.1. We will return to the very first operations ofthis routine later.

To get the code running, you need to download and unpack the packagenb6mpi–version.tar.gz :

user�lo
alhost:~> gzip -d -
 nb6mpi-version.tar.gz | tar xvf �

A directory will be created containing all the source files (routines and functions). By default the
directory is callednb6mpi-version / , and it can be renamed to any other name; for example, we
will change it toNbody for convenience.

Most of the files have the suffix.f, .F, .
u or .h. All .f files are directly read by a Fortran
compiler. The.F files will pass preprocessor first, which selects code lines separated byprepro-
cessor options, e.g. between#ifdef PARALLEL and#endif, for they activate the parallel code on
different multiprocessor machines. By this, some portability between different hardware is ensu-
red at least, and a single processor version of the code can easily be compiled as well. The.h are
header files and declare the variables and their blocks.

The files have to be compiled on the computer you are working at. There are several options
for compilation, and their usage is explained in theMakefile. For example:

user�lo
alhost:~> 
d Nbody

user�lo
alhost:~> make mpi
hgpu

will apply the standard Fortran compiler on your hardware. Other targets are also specified for
different hardware such as PC clusters, CRAY T3E or Sun parallel machines. Compilations like
make pgf or make pgfp4 make use of commercial Fortran compilers and special optimisation
for individual processors. More of them can be created by the user or provided by the authors on
request. The compilation creates machine–readable object files with the suffix .o . The files are
linked to a resulting executable with the namenbody6 . Now, the code is ready to start.

It is recommendable to start the simulations in another folder, e.g.Run/ and copy the executa-
ble therein. While unpacking, this folder is created by default and some trialfiles are delivered.
Copy the newly compiled executable to this directory:

homedir/Nbody> 
d Run

homedir/Nbody/Run> 
p ../nbody6 .

Depending on the user’s individual research, the Nbody code opensa wide field of application
possibilities. The user has to define his model by a number of input control variables, e.g. number
of stars, the size of the cluster, a mass function, profile, and many more. These control variables
are gathered in the fileinput1000 . The detailed explanation of its handling is given in Chapter
4. Alternatively, a data file nameddat.10 can be used, which contains data for an initial configu-
ration (see Ch.??). If the model criteria are defined, a single processor simulation run is started
with the command

homedir/Nbody/Run> ./nbody6 < input1000 > out1000 &

In this example, the code reads the control variables given in the fileinput1000 from Unix
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PROGRAM NBODY6

*

*             N B O D Y 6++

*             *************

*

*       Regularized AC N-body code with triple & binary collisions.

*       --------------------------------------------------------

*

*       Hermite integration scheme with block-steps (V 4.0.0 April/99).

*       ------------------------------------------------------------------

*

*       Developed by Sverre Aarseth, IOA, Cambridge.

*       ............................................

*       Message Passing Version NBODY6++ for Massively Parallel Systems

*       Developed by Rainer Spurzem, ARI, Heidelberg

*

INCLUDE 'common6.h'

COMMON/STSTAT/  TINIT,NIR,NIB,NRGL,NKS

EXTERNAL MERGE

*

#ifdef PARALLEL

#define MPIINIT 1

#else

#ifdef ENSEMBLE

#define MPIINIT 1

#else

#define MPIINIT 0

#endif

#endif

#if MPIINIT

*       Initialize MPI

CALL MPI_INIT(ierr)

CALL MPI_COMM_GROUP(MPI_COMM_WORLD,group,ierr)

CALL MPI_GROUP_SIZE(group,isize,ierr)

CALL MPI_GROUP_RANK(group,rank,ierr)

*     PRINT*,' This is rank=',rank,' size=',isize,' group=',group

#endif

*

*       Initialize the timer.

CALL CPUTIM(ttota)

*

*       Read start/restart indicator & CPU time.

IF(rank.eq.0)READ (5,*)  KSTART, TCOMP, TCRITp,

*    isernb,iserreg

*

#if MPIINIT

CALL MPI_BCAST(isernb,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(iserreg,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(KSTART,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(TCOMP,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(TCRITp,1,MPI_REAL,0,MPI_COMM_WORLD,ierr)

*

iserreg = max(isize,iserreg)

isernb = max(isize,isernb)

IF(rank.eq.0)PRINT*,' iserreg,isernb=',iserreg,isernb

#endif

*

IF (KSTART.EQ.1) THEN

*

*       Read input parameters, perform initial setup and obtain output.

Figure 3.1: The beginning of the Nbody6–code.
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standard inputstdin. Then, a star cluster is created according to the user’s instructions, andthe
bodies are moved one by one with respect to their time maturity. In NBODY6 they are due one by
one in individual steps (which might be blocked together in groups, though), in NBODY6++ they
are moved simultaneously forward in a group (see Chapter??). In certain time intervals (controlled
by the user), some first results and error checks are directed via the Unix standard outputstdoutto
out1000 . This file provides snapshots of the state of the system for a brief overview of some key
data of the simulation to judge about the quality and performance of the run.

There are several more files created, many of them binary files. Most important are
omm.1
and
omm.2, which contain dumps of the complete common blocks for a restart and checkpoint
purposes, and
onf.3 that contains the particle data for the user’s analysis. In the latter, many de-
tails of the run are saved, e.g. positions, velocities, neighbour densities, potential ofeachparticle in
anypredefined time interval. The volume of data in all three mentioned files critically depends on
the dimensions of vectors inparams.h . Here, the particle data plus some user-defined dimensions
are given a threshold in order to save disk space when outputting to
onf.3 — see Chapter 5.

At the time of this writing, the user has to provide own routines to postprocess theparticle data
from the simulation, using e.g. additional routines or programs (like IDL, gnuplot etc.), in order
to extract the binary data from this file and plot graphics. Work is in progress to provide a better
visual interface delivered with the program.

A run will be finished when one of 4 conditions becomes true:

• the specified CPU–time on the computer is exceeded (variableTCOMP in the input file), or

• the maximum Nbody–time (see Ch. 4) is reached (variableTCRIT), or

• the physical cluster time in Myr is reached (variableTCRITp), or

• the number of cluster stars has fallen below a minimum (variableNCRIT).

A soft termination of a running simulation can be realized by generating of a fileSTOP in the exe-
cuting directory:

homedir/Nbody/Run> tou
h STOP

In that case, a checkpoint of the code is done, which is located in the routineintgr.F and shown
in Figure 3.2. The program writes out the current variables, saves a complete common dump in

Figure 3.2: Soft interruption of a simulation run inintgr.F: If the dummy file “STOP” exists, then the run
terminates.


omm.1 and terminates. The run can be restarted and continued from the same pointwhere it was
left.
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Before a restart, it is recommendable to copy or rename the files, otherwise they may be over-
written. Any file
omm.1 and
omm.2 is restartable. The different names are just for getting com-
mon dumps at different time units. For example, if an irregular termination takes place,
omm.2
contains the data at some earlier time point, while
omm.1 always contains the last time data.

To restart a run, a different very short input control data file needsto be used, because most
of the control data are already stored in
omm.1 . Only the first line corresponds to the standard
input file, but the first input variable,KSTART, has to be changed to “2” or higher. In this case, the
routinemodify.F will be entered.

KSTART Function
1 new run, start from initial values given indata.F
2 continuation of a run without changes
3 restart of a run with changes of the following parameters given in

the second line of a newly created input file:
DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, J, K
where the options KZ can be changed via KZ(J)=K

4 restart of a run with following parameters changed in the second
line: ETAI, ETAR, ETAU, DTMIN, RMIN, NNBOPT

5 restart of a run with all parameter changes in the run control index
3 and 4. The changes must succeed the first line.

“0” values in the fields are interpreted as: Do not change the value of this parameter. Example: A
new input file

3 10000 1.E6 40 40
0 2.0 0 0 2000 2.0E-06 30 0

will change the values of DELTAT=2.0, TCRIT=2000, QE=2·10−6, and KZ(30)=0 . Note: It is
only possible to change one of the KZ-vector values at a restart.
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4 Input variables

The input control file of NBODY6++ (see below), contains a minimum of 83 parameters which
steer one simulation run for its technical and physical properties (it is verysimilar but not identical
to the one used for NBODY6). As for the technical aspect, the file supervises the run e.g. for
its duration, intervals of the output, or error check; the physical parameters concern the size of
a cluster, initial conditions, or a number of optional features related to the numerical problem to
be studied. The handling of this input file appears rather entangled at first sight, for it has grown
rather historically and “ready–for–use” than customer–oriented. Thus, the input variables are read
by different routines (functions) in the code, and the nature of the parameters are woven with each
other in some cases. Also, some parameters require additional input, such that the total number of
lines and parameters may vary.

In the following, we explain the main input file and give an example of typical values for a
simulation of an isolated globular cluster. Then, we proceed to the thresholds.

Input with all options:

nbody6.F KSTART TCOMP TCRITp isernb iserreg iserks
input.F N NFIX NCRIT NRAND NNBOPT NRUN

ETAI ETAR RS0 DTADJ DELTAT TCRIT QE RBAR ZMBAR
KZ(1) KZ(2) KZ(3) KZ(4) KZ(5) KZ(6) KZ(7) KZ(8) KZ(9) KZ(10)
KZ(11) KZ(12) KZ(13) KZ(14) KZ(15) KZ(16) KZ(17) KZ(18) KZ(19) KZ(20)
KZ(21) KZ(22) KZ(23) KZ(24) KZ(25) KZ(26) KZ(27) KZ(28) KZ(29) KZ(30)
KZ(31) KZ(32) KZ(33) KZ(34) KZ(35) KZ(36) KZ(37) KZ(38) KZ(39) KZ(40)
KZ(41) KZ(42) KZ(43) KZ(44) KZ(45) KZ(46) KZ(47) KZ(48) KZ(49) KZ(50)
DTMIN RMIN ETAU ECLOSE GMIN GMAX SMAX

data.F ALPHA BODY1 BODYN NBIN0 NHI0 ZMET EPOCH0 DTPLOT
setup.F AP0 ECC N2 SCALE (KZ(5)=2)

AP0 ECC SCALE (KZ(5)=3)
AP0 ECC SCALE (KZ(5)=3)
SEMI ECC M1 M2 (KZ(5)=4)
ZMH RCUT (KZ(5)=6&&KZ(24)<0)

s
ale.F Q VXROT VZROT RTIDE
xtrnl0.F GMG RG0 (KZ(14)=2)

GMG DISK A B VCIRC RCIRC RG VG (KZ(14)=3)
MP AP MPDOT TDELAY (KZ(14)=3||KZ(14)=4)

binpop.F SEMI ECC RATIO RANGE NSKIP IDORM (KZ(8)=1||KZ(8)>4)
hipop.F SEMI ECC RATIO RANGE (KZ(8)>0&& KZ(18)>1)
imbhinit.F MMBH XBH(1) XBH(2) XBH(3) VBH(1) VBH(2) VBH(3) DTBH (KZ(24)=1)

loud0.F NCL RB2 VCL SIGMA CLM RCL2 (KZ(13)>0)

nbody6.F:

KSTART Run control index
=1: new run (construct new model or read fromdat.10)
=2: restart/continuation of a run, needsfort.1

=3: restart + changes of DTADJ, DELTAT, TADJ, TNEXT, TCRIT, QE, J, KZ(J)
=4: restart + changes of ETAI, ETAR, ETAU, DTMIN, RMIN, NCRIT,NNBOPT,
SMAX
=5: restart containing the combination of the control index 3 and 4

TCOMP Maximum wall-clock time in seconds (parallel runs: wall clock)
TCRITP Termination time in Myrs
isernb For MPI parallel runs: only irregular block sizes larger than this value are executed

in parallel mode (dummy variable for single CPU)
iserreg For MPI parallel runs: only regular block sizes larger than this value are executed in

parallel mode (dummy variable for single CPU)
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iserks For MPI parallel runs: only ks block sizes larger than this value are executed in par-
allel mode (dummy variable for single CPU)

input.F:

N Total number of particles (single + c.m.s. of binaries; singles + 3×c.m.s. of binaries
< NMAX−2)

NFIX Multiplicator for output interval of data on
onf.3 and of data for binary stars (output
each DELTAT×NFIX time steps; compare KZ(3) and KZ(6))

NCRIT Minimum particle number (alternative termination criterion)
NRAND Random number seed; any positive integer
NNBOPT Desired optimal neighbour number (< LMAX−5)
NRUN Run identification index

ETAI Time–step factor for irregular force polynomial
ETAR Time–step factor for regular force polynomial
RS0 Initial guess for all radii of neighbour spheres (N–body units)
DTADJ Time interval for parameter adjustment and energy check (N–body units)
DELTAT Time interval for writing output data and diagnostics, multiplied by NFIX(N–body

units)
TCRIT Termination time in units (N–body units)
QE Energy tolerance:

– immediate termination if DE/E > 5*QE & KZ(2)≤ 1;
– restart if DE/E > 5*QE & KZ(2) > 1 and termination after second restart attempt.

RBAR Scaling unit in pc for radial (N–body units)
ZMBAR Scaling unit for average particle mass in solar masses

(in scale-free simulations RBAR and ZMBAR can be set to zero; depends on KZ(20))

KZ(1) Save COMMON to filefort.1
= 1: at end of run or when dummy file STOP is created
= 2: every 100*NMAX steps

KZ(2) Save COMMON to filefort.2
= 1: save at output time
= 2: save at output time and restart simulation if energy error DE/E > 5*QE

KZ(3) Save basic data to file
onf.3 at output time (unformatted)
KZ(4) (Suppressed) Binary diagnostics onbdat.4 (# = threshold levels <10)
KZ(5) Initial conditions of the particle distribution, need KZ(22)=0

= 0: uniform & isotropic sphere
= 1: Plummer random placing
= 2: two Plummer models in orbit (extra input)
= 3: massive perturber and planetesimal disk (each pariticle has circular orbit, con-
stant separation along radial direction between each neighbors and random phase)
(extra input)
= 4: massive initial binary (extra input)
= 5: Jaffe model (extra input)
≥ 6: Zhao BH cusp model (extra input if KZ(24)<0)

KZ(6) Output of significant and regularized binaries at main output (bodies.f)
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= 1: output of regularized and significant binaries (|E|>0.1 ECLOSE)
= 2: output of regularized binaries only
= 3: output significant binaries at output time and regularized binaries with time
interval DELTAT
= 4: output of regularized binaries only at output time

KZ(7) Determine Lagrangian radii and average mass, particle counters,average velocity,
velocity dispersion, rotational velocity within Lagrangian radii (lagr.f)
= 1: Get actual value of half mass radius RSCALE by using current total mass
≥ 2: Output data at main output andlagr.7
≥ 6: Output Lagrangian radii for two mass groups atlagr.31 and lagr.32

(lagr2.f; based on KZ(5)=1,2; slowly: O(N2))
—- methods:
= 2,4: Lagrangian radii calculated by initial total mass
= 3,≥ 5: Lagrangian radii calculated by current total mass (The single/K.S-binary
Lagrangian radii are still calculated by initial single/binary total mass)
= 2,3: All parameters are averaged within the shell between each two Lagrangian
radii neighbors
≥ 4: All parameters are averaged from center to each Lagrangian radius

KZ(8) Primordial binaries initialization and output (binpop.f)
—- Initialization:
= 0: No primordial binaries
= 1,≥ 3: generate primordial binaries based on KZ(41) and KZ(42) (binpop.F)
= 2: Input primordial binaries from first 2×NBIN0 lines ofdat.10
—- Output:
> 0: Save information of primordial binary that change member inpbin.18; binary
diagnostics at main output (binout.f)
≥ 2: Output K.S. binary inbdat.9, soft binary inbwdat.19

KZ(9) Binary diagnostics
= 1,3: Output diagnostics for the hardest binary below ECLOSE inhbin.39

(adjust.f)
≥ 2: Output binary evolution stages inbinev.17 (binev.f)
≥ 3: Output binary with degenerate stars indegen.4 (degen.f)

KZ(10) K.S. regularization diagnostics at main output
> 0: Output new K.S. information
> 1: Output end K.S. information
≥ 3: Output each integrating step information

KZ(11) (Suppressed)
KZ(12) HR diagnostics of evolving stars with output time interval DTPLOT insse.83 (sin-

gle star) andbse.82 (K.S. binary)
KZ(13) Interstellar clouds

= 1: constant velocity
> 2: Gaussian velocity

KZ(14) External tidal force
= 1: standard solar neighbor tidal field
= 2: point-mass galaxy with circular orbit (extra input)
= 3: point-mass + disk + halo + Plummer (extra input)
= 4: Plummer model (extra input)

KZ(15) Triple, quad, chain and merger search
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≥ 1: Switch on triple, quad, chain (KZ(30)>0) and merger search (impa
t.f)
≥ 2: Diagnostics at main output at begin and end of triple, quad
≥ 3: Save first five outer orbits every half period of wide quadruple before merger
and stable quadruples that accepted for merger inquastab.89

KZ(16) Auto-adjustment of regularization parameters
≥ 1: Adjust RMIN, DTMIN & ECLOSE every DTADJ time
≥ 3: modify RMIN for GPERT > 0.05 or < 0.002 in chain, output diagnostics at
ks
rit.77

KZ(17) Auto-adjustment of ETAI, ETAR and ETAU by tolerance QE everyDTADJ time
(
he
k.f)
≥ 1: Adjust ETAI, ETAR
≥ 2: Adjust ETAU

KZ(18) Hierarchical systems
= 1,3: diagnostics (hiar
h.f)
≥ 2: Initialize primordial stable triples, number is NHI0 (hipop.F)
≥ 4: Data bank of stable triple, quad inhidat.87 (hidat.f)

KZ(19) Stellar evolution mass loss
= 1,2: supernova scheme
≥ 3: Eggleton, Tout & Hurley
≥ 5: extra diagnostics (mdot.F)
= 2,4: Input stellar parameters fromfort.21 (instar.f)

N lines of (MI, KW, M0, EPOCH1, OSPIN)
MI: Current mass
KW: Kstar type
M0: Initial mass
EPOCH1: evolved age of star (Age= TIME[Myr] − EPOCH1)
OSPIN: angular velocity of star

KZ(20) Initial mass functions, need KZ(22)−0 or 9:
= 0: self-defined power-law mass function using ALPHAS (data.F)
= 1: Miller-Scalo-(1979) IMF (imf.f)
= 2,4: KTG (1993) IMF (imf2.f)
= 3,5: Eggleton-IMF (imf2.f)
= 6,7: Kroupa(2001) (imf2.f), extended to Brown Dwarf regime (imfbd.f)
—- Primordial binary mass
= 2,6: random pairing (imf2.f)
= 3,4,5,7: binary mass ratio corrected by(m1/m2)′ = (m1/m2)

0.4 + constant (Eg-
gleton,imf2.f)

KZ(21) Extra diagnostics information at main output every DELTAT interval(output.F)
≥ 1: output NRUN, MODEL, TCOMP, TRC, DMIN, AMIN, RMAX, RSMIN, NEFF
≥ 2: Number of escapers NESC at main output will be counted by Jacobi escape
criterion (slowly algorithm: O(N2), ja
obi.f)

KZ(22) Initialization of basic particle data mass, position and velocity (data.F)
—- Initialization with internal method
= 0,1: Initial position, velocity based on KZ(5), initial mass based on KZ(20)
= 1: write initial conditions indat.10 (s
ale.F)
—- Initialization by reading data fromdat.10
= 2: input through NBODY-format (7 parameters each line: mass, position(1:3), ve-
locity(1:3))
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= 3: input through Tree-format (data.F)
= 4: input through Starlab-format
= 6: input through NBODY-format and do scaling
= 7: input through Tree-Format and do scaling
= 8: input through Starlab-format and do Scaling
= 9: input through NBODY-format but ignore mass (first column) and use IMF based
on KZ(20), then do scaling

KZ(23) Removal of escapers (es
ape.F)
≥ 1: remove escapers and ghost particles generated by two star coalescence (collisi-
on)
= 2,4: write escaper diagnostics ines
 11

≥ 3: initialization & integration of tidal tail
KZ(24) Initial conditions for subsystems

< 0: ZMH & RCUT (N-body units) Zhao model (Need KZ(5)≥6, setup.F)
= 1: Add one massive black hole (extra input: mass, position, velocity and output
frequency), will output black hole data inmbh.45 and its neighbor data inmbhnb.46

KZ(25) Velocity kicks for white dwarfski
k.F
= 1: Type 10 Helium white dwarf & 11 Carbon-Oxygen white dwarf
= 2: All WDs (type 10, 11 and type 12 Oxygen-Neon white dwarf)

KZ(26) Slow-down of two-body motion, increase the regularization integration efficiency
≥ 1: Apply to KS binary
≥ 2: Apply to chain
= 3: Rectify to get better energy conservation

KZ(27) Two-body tidal circularization (Mardling & Aarseth, 2001; Portegies Zwart et al.
1997)
(Please suppress in KS parallel version)
= 1: sequential
= 2: chaos
= 3: GR energy loss
= −1: Only detect collision and suppress coalescence

KZ(28) Magnetic braking and gravitational radiation for NS or BH binaries(Need KZ(19)=3
and based on KZ(27))
≥ 1: GR coalescence for NS & BH (brake.f, brake3.f)
≥ 2: Diagnostics at main output (brake.f)
= 3: Input of ZMH = 1/SQRT(2*N) (Need KZ(5)≥6) (setup.F)
= 4: Set every star as type 13 Neutron star (Need KZ(27)=3) (instar.f)

KZ(29) (Suppressed) Boundary reflection for hot system
KZ(30) Hierarchical system regularization

= −1: Use chain only
= 0: No triple, quad and chain regularization, only merger
= 1: Use triple, quad and chain (impa
t.f)
≥ 2: Diagnostics at begin/end of chain at main output
≥ 3: Diagnostics at each step of chain at main output

KZ(31) Centre of mass correction after energy check (
m
orr.f)
KZ(32) Adjustment (increase) of adjust interval DTADJ, output interval DELTAT and energy

error criterion QE based on single particle energy (
he
k.f)
KZ(33) Block-step statistics at main output (diagnostics)

≥ 1: Output irregular block step; and K.S. binary step if KZ(8)>0
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≥ 2: Output regular block step
KZ(34) Roche-lobe overflow

= 1: Roche & Spin synchronisation on binary with circular orbit (syn
h.f)
= 2: Roche & Tidal synchronisation on binary with circular orbit by BSE method
(bsetid.f)

KZ(35) TIME reset to zero every 100 time units, total time is TTOT = TIME + TOFF
(adjust.F)

KZ(36) (Suppressed) Step reduction for hierarchical systems
KZ(37) Neighbour list additions (
he
kl.F)

≥ 1: Add high-velocity particles into neighbor list
≥ 2: Add small time step particle (like close encounter particles near neighbor radius)
into neighbor list

KZ(38) Force polynomial corrections during regular block step calculation
= 0: standard, no corrections
= 1: all gains & losses included
= 2: small regular force change skipped
= 3: fast neighbour loss only

KZ(39) Neighbor radius adjustment method
= 0: The system have unique density centre and smooth density profile
= 1,≥ 3: The system have no unique density centre or smooth density profile

will skips velocity modification of RS(I) (regint.f, reg
or_gpu.f)
will not reduce neighbor radius if particle is outside half mass radius
(For GPU) reduce RS(I) by multiply 0.9 instead of estimation of RS(I) based on

NNBOPT/NNB when GPU overflow happened (fpoly0.F, util_gpu.F)
= 2,3: (For GPU) Consider sqrt(particle mass / average mass) as the factor todeter-
mine the particlés neighbor membership. (fpoly0.F, util_gpu.F)

KZ(40) (Suppressed)
KZ(41) proto-star evolution of eccentricity and period for primordial binaries initialization

(proto_star_evol, binpop.F)
KZ(42) Initial binary distribution

= 0: RANGE>0: uniform distribution in log(semi) between SEMI0 and SE-
MI0/RANGE

RANGE<0: uniform distribution in semi between SEMI0 and -1*RANGE.
= 1: linearly increasing distribution functionf = 0.03438∗ logP
= 2: f = 3.5logP/[100+(logP)∗∗2]
= 3: f = 2.3(logP−1)/[45+(logP−1)∗∗2]; This is a “3rd” iteration when pre-ms
evolution is taken into account with KZ(41)=1
= 4: f = 2.5(logP−1)/[45+(logP−1)∗∗2]; This is a “34th” iteration when pre-ms
evolution is taken into account with KZ(41)=1 and RBAR<1.5
= 5: Duquennoy & Mayor 1991, Gaussian distribution with mean logP= 4.8, SDEV
in logP = 2.3. Use Num.Recipes routinegasdev.f to obtain random deviates given
“idum1”
= 6: eigen-evolution (Pavel Kroupa & Rosemary Mardling)

KZ(43) (Unused)
KZ(44) (Unused)
KZ(45) (Unused)
KZ(46) HDF5/CSV format output (name,time,x,v,m,f,fdot,kstar,rho,phi,L,radius,Teff,mcore,radiuscore)

= 1,3: HDF5 format
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= 2,4: CSV format
= 1,2: Only output active stars with time interval defined by KZ(47)
= 3,4: Output full particle list with time interval defined by KZ(47)

KZ(46) (Unused)
KZ(47) Frequency for KZ(46) output

= 0: Output data during each irregular block time step
= 1 ∼ 63: Output data with time interval 0.5KZ(47)

KZ(48) (Unused)
KZ(49) Computation of Moments of Inertia (with Chr. Theis) infort.60 (ellan.f)
KZ(50) (Unused)

DTMIN Time–step criterion for regularization search
RMIN Distance criterion for regularization search
ETAU Regularized time-step parameter (6.28/ETAU steps/orbit)
ECLOSE Binding energy per unit mass for hard binary (positive)
GMIN Relative two-body perturbation for unperturbed motion
GMAX Secondary termination parameter for soft KS binaries
SMAX Maximum time-step (factor of 2 commensurate with 1.0)

data.F:

ALPHA Power-law index for initial mass function, routinedata.F
BODY1 Maximum particle mass before scaling (based on KZ(20); solar massunit)
BODYN Minimum particle mass before scaling
NBIN0 Number of primordial binaries (need KZ(8)>0)

– by routineimf2.F using a binary IMF (KZ(20)≥2)
– by routinebinpop.F splitting single stars (KZ(8)>0)
– by reading subsystems fromdat.10 (KZ(22)≥2)

ZMET Metal abundance (in range 0.03 - 0.0001)
EPOCH0 Evolutionary epoch (in 106 yrs)
DTPLOT Plotting interval for stellar evolution HRDIAG (N-body units;≥ DELTAT)

setup.F: if (kz(5)=2)

APO Separation of two Plummer models in Nbody Unit (SEMI = APO/(1+ ECC). (Notice
SEMI will be limited between 2.0 to 50.0)

ECC Eccentricity of two-body orbit (ECC≥0 and ECC < 0.999)
N2 Membership of second Plummer model (N2 <= N)
SCALE Scale factor for the second Plummer model, second cluster will be generated by first

Plummer model withX ×SCALEandV ×
√

SCALE(≥ 0.2 for limiting minimum
size)
if (kz(5)=3)

APO Separation between the perturber and Sun in N-body Unit
ECC Eccentricity of orbit (=1 for parabolic encounter)
SCALE Perturber mass scale factor, perturmer mass = Center star mass× SCALE (=1 for

Msun)
if (kz(5)=4)
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SEMI Semi-major axis (slightly modified; ignore if ECC > 1)
ECC Eccentricity (ECC > 1: NAME = 1 & 2 free-floating)
M1 Mass of first member (in units of mean mass)
M2 Mass of second member (rescaled total mass = 1)

if (kz(5)≥6) and (kz(24)<0)

ZMH Mass of single BH (in N-body units)
RCUT Radial cutoff in Zhao cusp distribution (MNRAS, 278, 488)

s
ale.F:

Q Virial ratio (routines
ale.F; Q=0.5 for equilibrium)
VXROT XY–velocity scaling factor (> 0 for solid-body rotation)
VZROT Z–velocity scaling factor (not used if VXROT = 0)
RSPH2 Radius of reflecting sphere (see KZ(29); units of RSCALE)

xtrnl0.F: if (kz(14)=2)

GMG Point-mass galaxy (solar masses, linearized circular orbit)
RG0 Central distance (in kpc)

if (kz(14)=3)

GMG Point-mass galaxy (solar masses)
DISK Mass of Miyamoto disk (solar masses)
A Softening length in Miyamoto potential (in kpc)
B Vertical softening length (kpc)
VCIRC Galactic circular velocity (km/sec) at RCIRC (=0: no halo)
RCIRC Central distance for VCIRC with logarithmic potential (kpc)
RG Initial position; DISK+VCIRC=0, VG(3)=0: A(1+E)=RG(1), E=RG(2)
VG Initial cluster velocity vector (km/sec)

if (kz(14)=3,4)

MP Total mass of Plummer sphere (in scaled units)
AP Plummer scale factor (N-body units; square saved in AP2)
MPDOT Decay time for gas expulsion (MP = MP0/(1 + MPDOT*(T-TD))
TDELAY Delay time for starting gas expulsion (T > TDELAY)

binpop.F: if (kz(8)=1 or kz(8)>2)

SEMI Initial semi-major axis limit
ECC Initial eccentricity

< 0: thermal distribution,f (e) = 2e
≥ 0and≤ 1: fixed value of eccentricity
= 20: uniform distribution
= 30: distribution withf (e) = 0.1765/(e2)

= 40: generalf (e) = a∗eb, e0 <= e<= 1 with a = (1+b)/(1−e0(1+b)), current
values:e0 = 0 andb = 1 (thermal distribution)

RATIO Binary mass ratioM1/(M1+M2)
= 1.0: M1 = M2 = 〈M〉

RANGE 42= 0: semi-major axis range for uniform logarithmic distribution
42= 6: Minimum period of binary in unit of day
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not used in other KZ(42)
NSKIP Binary frequency of mass spectrum (starting from body #1)
IDORM Indicator for dormant binaries (> 0: merged components)

hipop.F: if (kz(8)>0 and kz(18)>1)

SEMI Max semi-major axis in model units (all equal if RANGE = 0)
ECC Initial eccentricity (< 0 for thermal distribution)
RATIO Mass ratio (= 1.0: M1 = M2; random in [0.5 ∼ 0.9])
RANGE Range in SEMI for uniform logarithmic distribution (> 0)

imbhinit.F:if (kz(24)=1)

MMBH Mass of massive black hole in unit solar mass
XBH(1:3) 3 dimensional position of massive black hole in unit pc
VBH(1:3) 3 dimensional velocity of massive black hole in km/s
DTBH Output interval for massive black hole data inmbh.45 andmbhnb.46 (N-body unit)


loud0.F: if (kz(13)>0)

NCL Number of interstellar clouds
RB2 Radius of cloud boundary in pc (square is saved)
VCL Mean cloud velocity in km/sec
SIGMA Velocity dispersion (KZ(13)>1: Gaussian)
CLM Individual cloud masses in solar masses (maximum MCL)
RCL2 Half-mass radii of clouds in pc (square is saved)

A typical input file can look like as follows. It defines a new simulation runningfor 1,000,000
CPU–minutes withN = 16,000 particles distributed along a Plummer profile (KZ(5)=1). The run
may alternatively terminate when TCRIT=1000.0 N-body unit. or if a final particle number of
NCRIT=10 has been reached. The output and adjustment time interval DELTAT/DTADJ are 1.0
N-body unit. The initial mass function follows a kroupa, 2001 with mass ranging from mmax =
20.0M⊙ to mmin = 0.08M⊙ (BODY1 and BODYN). The initial virial ratio is 0.5 (equilibrium).
The stellar evolution is switched on (KZ(19)=3) and initial metallicity is 0.001. Multiples and
chain regularization are switched on (KZ(15)=2 and KZ(30)=2). It uses solar neighbor tidal field
(KZ(14)=1).
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1 1000000.0 1.E6 40 40 640

16000 1 10 43532 100 1

0.02 0.02 0.1 1.0 1.0 1000.0 2.0E-05 1.0 0.7

0 1 1 0 1 0 4 0 0 2

0 1 0 1 2 1 0 0 3 6

1 0 2 0 0 2 0 0 0 2

1 0 2 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

1.0E-06 1E-4 0.1 1.0 1.0E-06 0.01 1.0

2.35 20.0 0.08 0 0 0.001 0 1.0

0.5 0.0 0.0 0.0

Input variables for primordial Binaries

Many star clusters contain initial hard binaries with binding energies much larger than the thermal
energy (the threshold ECLOSE is a suitable division between hard and soft binaries). There are
two ways to initialise primordial binaries:

The firstone always starts from some initial mass function (IMF) provided by the routines
imf.f or imf2.f. The option KZ(8)=1 or≥ 3 invokes the routinebinpop.F, which reads the last
line of the input file containing NBIN and the parameters of their distribution (seeabove). In this
case, binaries are created either by random pairing of single stars obtained from the IMF or by
splitting them, depending on the value of KZ(20) — see there.

The secondway assumes that particle data, including the binaries, are provided via the input
data on filedat.10 (as e.g. in the Kyoto–II collaborative experiment). In such a case KZ(8)=2
and NBIN0 should be set to the expected number of primordial binaries from the file. The code
will first create NBIN0 centers of masses, and then use those for scaling, before regularizing the
pairs.

A typical input file with primordial binaries looks as follows. Here, we use binary random pai-
ring fromimf2.f andbinpop.F (KZ(20)=6 and KZ(8)=3, respectively) for 1000 initial binaries.
The semi-major axis of binaries use uniform distribution in log(semi) with rangingfrom 41.3 AU
to 0.00413 AU. The eccentricity of binaries use thermal distribution. It was created from this input
file running for 1000 time units. Stellar evolution was also switched on in this file (KZ(19)=3). In
the package of the code, the fileN10k_B1k.input is included.

1 1000000.0 1.E6 40 40 640

10000 1 10 43532 100 1

0.02 0.02 0.17 1.0 1.0 800.0 5.0E-05 1.0 0.7

0 1 1 0 1 0 4 3 0 2

0 1 0 1 2 1 0 0 3 6

1 0 2 0 0 2 0 0 0 2

1 0 2 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

5.0E-06 3E-4 0.1 1.0 1.0E-06 0.01 0.5

2.35 100.0 0.08 1000 0 0.001 0 1.0

0.5 0.0 0.0 0.0

2E-4 -1.0 1.0 1E4 5 0
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Stellar Evolution

Stellar evolution is invoked by KZ(19)=1,2 or KZ(19)≥3, offering two different schemes. The
simpler one is KZ(19)=1, while the more complex one, K(19)≥3, is based on the Cambridge
stellar evolution school (Hurley, Pols, Tout 2000). Binaries are evolved as single stars without
perturbing each other, any more complex binary evolution is not (yet) supported in NBODY6++.
The main effects are changing stellar masses, radii, and luminosities, which give rise to cluster
mass loss. The mass is assumed to escape from the cluster immediately and possible collisions
depend on stellar radii.

With the additional option KZ(12)>0, information on binaries and single stars iswritten on
two files (unit 82, filebev.82 and unit 83, filesev.83) in regular time intervals determined by
TPLOT. The data for each star in unit 83 comprise of NAME(I), KW, RI, M1, ZL1, which are
name of star, stellar type (seedefine.f), distance to density centre scaled with core radius, mass
of the star, logarithmic luminosity, and logarithmic radius, respectively. (See Section Output)

Restart

It’s very common that in the computer cluster every job has running time limit, or the simulati-
on stop due to some energy conservation problem or the normal stop when the stop criterion is
reached. In this case the user may want to continue the simulation from the lasttime point. Thus
the input parameter should changed to restart mode. The first line of inputshown above combined
together with two extra lines (See the description of KSTART in the parameter table above). A
simple example is :

2 1000000.0 1.E6 40 40 640

Here KSTART=2 means every parameters keep the same as before and just restart from the last
dumping filefort.1. If the user want to change some parameters of simulation, the KSTART=3,5
can be set. For example:

3 1000000.0 1.E6 40 40 640

2.0 2.0 0.0 0.0 0.0 0.0 16 0

This restart file will change DTADJ and DELTAT to 2.0. The KZ(16) is changed to 0. All other
parameters that are set to 0.0 (TADJ, TNEXT, TCRIT, QE) keep same as before.
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5 Thresholds for the variables

Before the compilation of the code (Chapter 3), the parameter file (params.h) should be consulted
to check whether some vector dimensions are in the desired range. Most important are

• the maximum particle numberNMAX,

• the maximum number of regularised KS pairsKMAX, and

• the maximum number of neighbours per particleLMAX.

The particles are saved in various lists which serve to distinguish between their funcionality.
The table below and Figure?? (Figure not finished!!!) explain their nomenclature. “KS–pairs”
are particles that approach each other in a hyperbolic encounter; they are given a special treatment
by the code (see Chapter 11). If NPAIRS is the amount of KS–pairs, thenIFIRST = 2*NPAIRS +
1 is the first single particle (not member of a KS pair), and N the last one. NTOT = N + NPAIRS is
the total number of particles plus c.m.’s. Therefore NMAX, the dimension of all vectors containing
particle data should be at least of size N + KMAX, where N is the number of particles and KMAX
the maximum number of expected KS pairs. If one starts with single particles, KMAX = 10 or 20
should usually be enough, but in clusters with a large number of primordial binaries, KMAX must
be large.

N: Total number of particles
NBIN0: number of primordial binaries (physical bound stars)
NBIN: ???
NPAIRS: Number of binaries (KS–pairs, see Chapter??), transient unbound pairs as well as

persistent binaries
NTOT: = N + NPAIRS;

Number of single particles plus centres of masses of regularized (KS) pairs
KMAX: threshold for the amount of allowed KS pairs
NMAX: = N + KMAX; threshold for the total number of particles and the centreof masses

Hier gibt’s noch ein Bildchen!



2
3

6 How to read the diagnostics

The diagnostics is the ASCII readable text printed on unit 6stdout(“out1000” in Chapter 3) that gives a brief overview of the global statusand progress
of the cluster simulation. Different routines write into that file, depending on the options chosen as the input variables. The following lines occur:N NFIX NCRIT NRAND NNBOPT NRUN1000 5 10 1006 50 1ETAI ETAR RS0 DTADJ DELTAT TCRITp TCRIT QE RBAR ZMBAR1.0E-02 2.0E-02 3.0E-01 1.0E+01 1.0E+01 1.0E+06 2.0E+01 2.0E-05 1.0E+00 7.0E-01OPTIONS1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 401 1 1 0 1 0 4 0 0 2 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 2 0 0 0 2 0 0 2 0 1 0 1 1 0 1OPTIONS BK:1 2 3 4 5 6 7 8 9 100 0 0 0 0 0 0 0 0 0DTMIN RMIN ETAU ECLOSE GMIN GMAX1.0E-04 1.0E-02 1.0E-01 1.0E+00 1.0E-06 1.0E-02****** NOTE: new random number seed initialisation!****** AND new ran2 from new ed. of Press et al.

written by the routine:

input.F

Usage: Repetition of the
input variables

STANDARD IMF ALPHA = 2.35 BODY1 = 20.0 BODYN = 0.10 ZMASS = 3.36752E+02 NBIN0= 0 ZMET = 0.00 EPOCH0 = 0.00...............................................................................................................BINARY STAR IMF: NB = 400 RANGE = 3.27E+01 2.14E-01 ZMB = 3.74E+02 <MB> = 9.36E-01SINGLE STAR IMF: NS = 1200 RANGE = 7.76E+00 1.01E-01 ZMS = 5.25E+02 <MS> = 4.38E-01
IMF power law index, max. mass, min. mass, total mass, # of primordial bin., metallicity, evolution. epoch [Myrs].
..................................................................
number of objects, mass range, average mass before scaling.

data.F,
(if KZ(20)=0 &

BODY16=BODYN)

or

imf2.F, if KZ(20)≥2

Information about initial
mass function (IMF).
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SCALING: SX = 1.00421D+00 E = -2.49E-01 M(1) = 5.94E-02 M(N) = 2.97E-04 <M> = 1.00E-03TIME SCALES: TRH = 2.8E+01 TCR = 2.8E+00 2<R>/<V> = 2.8E+00PHYSICAL SCALING: R* = 1.0000E+00 M* = 7.0000E+02 V* = 1.7348E+00 T* = 5.6466E-01 <M> = 7.0000E-01SU = 4.4335E+07 AU = 2.0627E+05 YRS = 3.5408E+06

scaling factor for energy, total energy, max. mass, min. mass, average massafter scaling;
Spitzer’s half-mass relaxation time, crossing time obtained from total energy and mass, crossing time obtained from
virial radius (see 12);
information about physical scaling: values of oneN–body unit in length (pc), mass (solar masses), velocity (km/s),
time (million years), average mass of particles (solar massses), astronomicalunits (oneN–body unit) and years (one
N–body unit).

s
ale.F, units.f

fpoly1 time= 0.1200000035762785fpoly2 time= 0.2100000062584875

CPU (wall clock in parallel execution) time for initialising the force and its time derivative (fpoly1, fpoly_mpi.f)
and the second and third time derivative of the force (fpoly2, fpoly2_mpi.f). The mpi-versions are called for
initialisation in case of parallel runs.

start.F

TIME M/MT: 1.00D-02 2.00D-02 5.00D-02 1.00D-01 2.00D-01 3.00D-01 4.00D-01 5.00D-01 7.00D-01 9.00D-01 1.00D+00 <RC0.0 RLAGR: 1.52D-01 1.81D-01 1.91D-01 2.83D-01 4.33D-01 5.22D-01 6.17D-01 7.52D-01 1.16D+00 1.96D+00 5.86D+00 2.97D-010.0 AVMASS: 6.26D-04 4.26D-03 6.13D-04 9.45D-04 7.82D-04 1.11D-03 1.09D-03 8.35D-04 9.19D-04 1.25D-03 9.01D-04 1.23D-030.0 NPARTC: 17 9 2 53 130 90 91 122 216 163 107 900.0 SIGR2: 2.19D-01 1.70D-01 7.37D-01 2.44D-01 1.89D-01 2.33D-01 2.16D-01 2.43D-01 1.72D-01 8.36D-02 5.09D-02 2.09D-010.0 SIGT2: 2.01D-01 8.25D-02 4.46D-02 2.12D-01 3.39D-01 2.42D-01 1.71D-01 1.83D-01 1.51D-01 1.03D-01 6.16D-02 1.63D-010.0 VROT: -8.34D-02 4.41D-01 -6.28D-01 3.14D-02 -1.54D-01 -9.44D-02 -6.45D-02 1.17D-02 5.35D-02 1.98D-02 -3.46D-02 4.46D-01

Time, specification of the Lagrangian radii, core radius
Time, Lagrangian radii, core radius (if primordial binaries: separately for singles and binaries, not shown above)
Time, average mass between Lagrangian radii, avmass in the core
Time, number of particles within the shell, in the core
Time, radial velocity dispersion within the shell, in the core
Time, tangential vel. dispersion within the shell, in the core
Time, rotational vel. within the shell, in the core (not shown above)

lagr.F
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0 ADJUST: TIME = 1.00000D+01 T[Myr℄ = 5.65 Q = 0.52 DE = -1.403819E-05 E = -2.500038E-01 EBIN= 0.000000E+00 EMERGE= 0.000000E+00

rank, “ADJUST:”, total time in NB units, physical time, virial ratio, relative energy error, total energy, total energy of
regularized pairs, energy of mergers
adjust.F

RMIN = 1.1E-03 DTMIN = 3.5E-05 RHOM = 3.5E+02 RSCALE = 9.5E-01 RSMIN = 2.2E-01 ECLOSE = 1.05 TC = 3PE N ttot treg tirr tpredtot tint tinit tks tt
omm tadj tmov tprednb tsub tsub2 xtsub1 xtsub20 1000 41.46000 29.54 7.23 0.63 40.39 0.99 0.07 0.00 0.59 0.00 1.50 0.00 0.00 0.00000D+00 0.00000D+00
close encounter distance and minimum time step (for regularization search, updated from input parameters if
KZ(16)=1), maximum density, virial radius, minimum neighbour sphere, hard binary threshold energy, total run time
in units of initial crossing times
number of processors, number of particles, total processing time, total regular processing, total irregular processing,
processing of prediction, time spent inintgrt.F, for initialisation, for KS integration, for communication, for adjust
and energy check, for overhead of moving data in parallel runs, for neighbour predictions, for MPI communicati-
on after irregular (tsub) and regular (tsub2) blocks, number of bytes transferred respectively. From xtsub1/tsub and
xtsub2/tsub2 the sustained bandwidth of MPI communication can be read off.Note, that the determination of these
quantities involves a certain overhead by many calls of
putim.F per block, so for critically large production runs
one may want to comment these out (most of them inintgrt.F).

adjust.F

0 T = 10.0 N = 1000 <NB> = 20 KS = 0 NM = 0 MM = 0 NS = 1000 NSTEPS = 1610624 273 321696 1016 DE = -0.140382E-04 E = -0.250004NRUN = 1 M# = 1 CPU = 6.91000E-01 TRC = 0.0 DMIN = 6.6E-05 6.6E-05 1.0E+02 1.0E+02 AMIN = 1.0E+02 RMAX = 0.0E+00 RSMIN = 0.22 NEFF = 128<R> RTIDE RDENS RC NC MC RHOD RHOM CMAX <Cn> Ir/R UN NP RCM VCM AZ EB/E EM/E TCR T6#1 0.95 9.5 0.21 0.08 5 0.073 159. 350. 5. 37.0 0.13 0 0 0.000 0.0000 0.006197 0.000 0.000 2.83 5NNPRED NBCORR NBFULL NBVOID NRCONV NICONV NBSMIN NBDIS NBDIS2 NCMDER NBDER NFAST NBFAST NBLOCK NBPRED#2 20204 294307 0 98 2664 9227 1576 0 0 33 0 0 0 58132 3045868NKSTRY NKSREG NKSHYP NKSPER NPRECT NKSREF NKSMOD NTTRY NTRIP NQUAD NCHAIN NMERG NSTEPT NSTEPQ NSTEPC NBLCKR NBFLUX#3 14463 45 33 0 0 0 0 0 0 0 0 0 0 0 0 10333 1903963

time, actual particle number, average neighbour number, number of KS pairs, number of merged KS pairs, number of
hierarchical subsystems, number of single stars, step numbers (irregular, irr. c.m., regular, KS), relative energy error
since last output, total energy
several more lines uncommented here....

output.F
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STEP I 0 3 63 91 154 220 160 133 109 44 19 4STEP R 0 4 77 133 249 310 179 45 3Max Speedup Irr: 4 3.76D+00 8 6.82D+00 16 1.14D+01 32 1.66D+01 64 2.15D+01 128 2.49D+01 256 2.66D+01 512 2.74D+01 1024 2.77D+01Max Speedup Reg: 4 3.71D+00 8 6.69D+00 16 1.12D+01 32 1.67D+01 64 2.22D+01 128 2.62D+01 256 2.91D+01 512 3.04D+01 1024 3.11D+01

histogram of distribution of irregular (STEP I), regular (STEP R)
If there are p step distribution (not appearing here, STEP U, in physicaltime), statistics of parallel work for irr. and
reg. steps, figures given are theoretical speedups for infinitely fastcommunication (limit of large block sizes)

levels.f

END RUN TIME[Myr℄ = 11.29 TOFF/TIME/TTOT= 0.00000000 20.00000000 20.00000000 CPUTOT = 1.6 ERRTOT =-5.15000D-05 DETOT =-1.28197D-050 INTEGRATION INTERVAL = 20.00 NIRR= 3237662 NIRRB= 1245 NREG= 779010 NKS= 4625PER TIME UNIT: NIRR= 1.61883D+05 NIRRB= 6.22500D+01 NREG= 3.89505D+04 NKS= 2.31250D+02Total CPU= 97.11000289410342

This is the regular end of a run giving: the integration time, total cumulative absolute and relative errors, cumulative
number of regular, irregular, KS steps, the step numbers per time unit and the total CPU (wall clock for parallel) time
in minutes.

adjust.F
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To check a regular stop of the run, look at the end of the diagnostics first.If there are failures,
the line “CALCULATION HALTED” appears and means that the energy conservation could not be
guaranteed. A restart with smaller steps (ETAI, ETAR) and larger neighbour number NNBOPT
may cure the problem, but not always; persistent problems should be reported to Rainer Spurzem.

The unix command on the output file, e.g.

homedir> grep ADJUST out1000

produces an overview of the accuracy (energy error at every DTADJ interval). It may show where
problems originated; a restart from the last ADJUST before the error withsmaller output intervals
is one way to look after it. Watch out, because sometimes errors are not reproducible, because
changes in ADJUST intervals change frequencies of prediction and smalldifferences can build up.
A quick possibility to see the real evolution of the system is togrep for the lines with Lagrangian
radii and other quantities (see above), which can directly be plotted, e.g. with gnuplot, because the
first column is always the time.
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7 Runs on parallel machines

For parallel runs, the filempif.h is very important, and system specialists should be consul-
ted in addition to us what to use. Again, for some standard systems templates areprovided (e.g.
mpif.t3e.h or mpif.mpi
h.h). The routine providing CPU–time measurements,
putim.F ,
and the use of the functionflush.f may need special attention depending on the hardware.



29

8 The Hermite integration method

Each particle is completely specified by its massm, positionr0, and velocityv0, where the sub-
script 0 denotes an initial value at a timet0. The equation of motion for a particlei is given by its
momentary accelerationa0,i due to all other particles and its time derivativeȧ0,i as

a0,i = −∑
i 6= j

Gmj
R
R3 , (1)

ȧ0,i = −∑
i 6= j

Gmj

[

V
R3 +

3R(V ·R)

R5

]

, (2)

whereG is the gravitational constant;R = r0,i − r0, j is the relative coordinate;R= |r0,i − r0, j | the
modulus; andV = v0,i −v0, j the relative space velocity to the particlej.

The Hermite scheme employed in NBODY6++ follows the trajectory of the particle by firstly
“predicting” a new position and new velocity for the next time stept. A Taylor series forr i(t) and
vi(t) is formed:

r p,i(t) = r0 +v0(t − t0)+a0,i
(t − t0)2

2
+ ȧ0,i

(t − t0)3

6
, (3)

vp,i(t) = v0 +a0,i(t − t0)+ ȧ0,i
(t − t0)2

2
. (4)

The predicted values ofr p andvp, which result from this simple Taylor series evaluation, using
the force and its time derivative att0, do not fulfil the requirements for an accurate high–order
integrator; they just give a first approximation tor1 andv1 at the upcoming timet1. Even if the time
step,t1− t0, is chosen impracticably small, a considerable error will quickly occur, let alone the
inadequate computational effort. Therefore, an improvement is made by theHermite interpolation
which approximates the higher accelerating terms by another Taylor series:

ai(t) = a0,i + ȧ0,i · (t − t0)+
1
2

a(2)
0,i · (t − t0)

2 +
1
6

a(3)
0,i · (t − t0)

3, (5)

ȧi(t) = ȧ0,i +a(2)
0,i · (t − t0)+

1
2

a(3)
0,i · (t − t0)

2. (6)

Here, the values ofa0,i and ȧ0,i are already known, but a further derivation of equation (2) for
the two missing orders on the right hand side turns out to be quite cumbersome.Instead, one
determines the additional acceleration terms from the predicted (“provisional”) r p and vp; we
calculate their acceleration and time derivative according to the equations (1)and (2) anew and
call these new termsap,i andȧp,i , respectively. Because these values ought to be generated by the
former high–order terms also (which we avoided), we put them into the left–hand sides of (5)
and (6). Solving equation (6) fora(2)

0,i , then substituting it into (5) and simplifying yields the third
derivative:

a(3)
0,i = 12

a0,i −ap,i

(t − t0)3 +6
ȧ0,i + ȧp,i

(t − t0)2 . (7)

Similarly, substituting (7) into (5) gives the second derivative:

a(2)
0,i = −6

a0,i −ap,i

(t − t0)2 −2
2ȧ0,i + ȧp,i

t − t0
. (8)
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Note, that the desired high–order accelerations are found just from thecombination of the low–
order terms forr0 andr p. We never derived higher than the first derivative, but achieved thehigher
orders easily through (1) and (2). This is called the Hermite scheme.

Previously, a four–step Adams–Bashforth–Moulton integrator was used(especially in NBO-
DY5, [2]), however, the new Hermite scheme allows twice as large timesteps for the same accuracy.
Also its storage requirements are less [16], [17], [4], [5].

Finally, we extend the Taylor series forr i(t) andvi(t), eqs. (3) and (4), by two more orders,
and find the “corrected” positionr1,i and velocityv1,i of the particlei at the computation timet1 as

r1,i(t) = r p,i(t)+a(2)
0,i

(t − t0)4

24
+a(3)

0,i
(t − t0)5

120
, (9)

v1,i(t) = vp,i(t)+a(2)
0,i

(t − t0)3

6
+a(3)

0,i
(t − t0)4

24
. (10)

The integration cycle for other upcoming steps may now be repeated from thebeginning, eqs. (1)
and (2). The local error inr andv within the two time steps∆t = t1− t0 is expected to be of order
O(∆t5), the global error for a fixed physical integration time scales withO(∆t4) [15].
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9 Individual and block time steps

Stellar systems are characterized by a huge dynamical range in radial andtemporal scales. The
time scale varies e.g. in a star cluster from orbital periods of binaries of somedays up to the
relaxation of a few hundred million years, or even billions of years. Even ifwe put for a moment the
very close binaries aside, which are treated differently (by regularization methods), there typically
is a large dynamic range in the average local stellar density from its centre to the very outskirts,
where it dissolves into the galactic tidal field. In a classical picture, the two closest bodies would
determine the time–step of force calculation for the whole rest of the system. However, for bodies
in regions where the changes of the force are relatively small, a permanent re–computing of the
terms appears time consuming. So, in order to economize the calculation, these objects shall be
allowed to move a longer distance before a recomputation becomes necessary. In between there
is always the possibility to acquire particle positions and velocities via a Taylor series prediction,
as described in Chapter 8. This is the idea of a vital method for assigning different time–steps,
∆t = t1 − t0, between the force computations, the so–called “individual time–step scheme” [1],
which was later advanced to the hierarchical block steps.

0 1 2 4 8 time steps 16

- - - - - - - - - - - - - -

- - - - - -

- - - - - - - -

- -

i

k

l

m

particles

Figure 9.1: Block time steps exemplary for four particles.

Each particle is assigned its own∆ti which is first illustrated for the case of “block time–steps”
in Figure 9.1. The particle namedi has the smallest time step at the beginning, so its phase space
coordinates are determined at each time step. The time step ofk is twice as large asi’s, and its
coordinates are just extrapolated (“predicted”) at the odd time steps, whilea full force calculation
is due at the dotted times. The step width may be altered or not after the end of theintegration
cycle for the special particle, as demonstrated fork and l beyond the label “8”. The time steps
have to stay commensurable with both, each other as well as the total time, such that a hierarchy
is guaranteed. This is the block step scheme.

As a first estimate, the rate of change of the acceleration seems to be a reasonable quantity for
the choice of the time step:∆ti ∝

√

ai/ȧi . But it turns out that for special situations in a many-body
system, it provides some undesired numerical errors. After some experimentation, the following
formula was adopted [2]:

∆ti =

√

√

√

√η
|a1,i ||a(2)

1,i |+ |ȧ1,i |2

|ȧ1,i ||a(3)
1,i |+ |a(2)

1,i |2
, (11)
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whereη is a dimensionless accuracy parameter which controls the error. In most applications it is
taken to beη ≈ 0.01 to 0.02, see also next chapter.

For the block–time steps, the synchronization is made by taking the next–lowestinteger of∆ti ;
the time steps are quantized to powers of 2 [15]. Then, there will be a group(block) of several
particles which are due to movement at each time step. If one keeps the exact∆ti ’s evaluated
from (11) for each particle, the commensurability is destroyed, and we arrive at the so–called
“individual time steps”; in this case, there exists one sole particle being due.The latter concept
is realized in the earlier codes NBODY1, NBODY3, NBODY5, where a neighbour scheme is
renounced. NBODY4, NBODY6, and NBODY6++ use a block step scheme.

Subsystems like star binaries, triples or a similar subgroups (they are termed KS pairs, chains,
hierarchies) enter the time–step scheme with their respective centre’s of masses only. Their internal
motion is treated in a different way by a regularized integration (Chapter 11).
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10 The Ahmad–Cohen scheme

The computation of the full force for each particle in the system makes simulations very time–
consuming for large memberships. Therefore, it is desirable to constructa method in order to
speed up the calculations while retaining the collisional approach. One way toachieve this is to
employ a “neighbour scheme”, suggested by [9].

The basic idea is to split the force polynomial (5) on a given particlei into two parts, an
irregular and a regular component:

ai = ai,irr +ai,reg. (12)

The irregular accelerationai,irr results from particles in a certain neighbourhood ofi (in the code, FI
and FIDOT are the irregular force and its time derivative at the last irregular step; internally some
routines use FIRR and FD as a local variable). They give rise to a stronger fluctuating gravitational
force, so it is determined more frequently than the regular one of the more distant particles that
do not change their relative distance toi so quickly (in the code, FR and FRDOT are the regular
force and its time derivative at the last regular step; some routines use as alocal variable FREG and
FDR). We can replace the full summation in eq. (1) by a sum over theNnb nearest particles forai,irr

and add a distant contribution from all the others. This contribution is updated using another Taylor
series up to the order FRDOT, the time derivative of FR at the last regular force computation1.

Wether a particle is a neighbour or not is determined by its distance; all membersinside a
specified sphere (“neighbour sphere” with radiusrs) are held in a list, which is modified at the end
of each “regular time–step” when a total force summation is carried out. In addition, approaching
particles within a surrounding shell satisfyingR ·V < 0 are included. This “buffer zone” serves
to identify fast approaching particles before they penetrate too far insidethe neighbour sphere.
The neighbour criterion should be improved according to relative forcesrather than distances, in
particular, if there are very strong mass differences between particles (black holes!) — such kind
of work is under progress.

Figures 10.1 and 10.2 show how the Ahmad–Cohen scheme works for one particle [17]. At
the beginning of the force calculation, a list of neighbour objects around the particlei is created
first (filled dots). From this neighbour list the irregular componentai,irr is calculated, and then
the summation is continued to the distant particles obtainingai,reg. At the same time we also
calculate the first time derivative. From the equations (5) and (6) the position and velocity of the
particlei are predicted. At timet1,irr we apply the “corrector” only forai,irr from the neighbours;
the regular component we do not correct, but obtain by extrapolatingai,reg. At the next step,t2,irr ,
the same predictor–corrector method proceeds for the neighbour particles, while the correction of
the distant acceleration term is still neglected. Whent1 is reached, the total force is calculated on
the basis of the full application of the Hermite predictor–corrector method. Also, a new neighbour
list is constructed using the positions at timet1. Thus, we calculate at certain times only the forces
from neighbours (irregular time–step,tirr), while at other times we calculate both the forces from
neighbours and distant particles (regular time–step,treg).

For a neighbour list of sizeNnb≪ N, this procedure can lead to a significant gain in efficiency,
provided the respective time scales forai,irr andai,reg are well separated.

The actual size of neighbour spheres in NBODY6++ is controlled iteratively by a requirement
in order to keep a certain optimal number of neighbours. This variable, NNBOPT, can be adjusted

1Note, that the code also keeps the variables F and FDOT, which contain onehalf (!) of thetotal force, and one sixth
(!) of the total time derivative of the force; this just a handy assignment for the frequent predictions of equation 3.
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Figure 10.1: Illustration of the neighbour scheme for particle i marked as the asterisk (after [2]).

according to performance requirements. Its typical values are between 50 and 200 for a very wide
range of total particle numbersN. Outside of the half-mass radius, the requirement of having
NNBOPT neighbours is relaxed due to low local densities. Insisting on NNBOPT neigbours could
result in undesired large amplitude fluctuations of the neighbour radii.

While [18] claim that the optimal neighbour number should grow asN3/4 (which would be
unsuitable for the performance on parallel computers), this is still an unsettled question. [2] advo-
cates the coupling of the neighbour radius to the local density contrast, butNBODY6++ doesnot
use that, since it makes average neighbour numbers much less predictable,which is bad for the
performance and profiling issues on supercomputers, again.

Resuming, the method of the two particle groups is squeezed into the hierarchical time–step
scheme making the overall view quite complex. Each particle is moved due to its time–step order
and the time–steps, because the force calculation is divided: In eq. (11) a further subscript is
needed which distinguishes the regular and irregular time step. The accuracy can be tuned by
ηirr ≈ 0.01 andηreg≈ 0.02, again.

Both, the neighbour scheme and the hierarchical time–step scheme have in common that they

t1,irr t2,irr ... t1∗,irr t2∗,irr

t0 t1 t2

-¾
∆tirr

¾ ∆treg
-

Figure 10.2: Regular and irregular time steps (after [17]).
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are centered on one particlei, and they distinguish between nearby and remote stars, and they
save computational time. One may ask: What is the intriguing difference between them? — The
neighbour scheme is aspatialhierarchy, which avoids a frequent force calculation of the remote
particles, because their totality provides a smooth potential which does not vary so much with
respect to the particlei; that potential is rather superposed by some fluctuating peaks of close–by
stars which will be “worked in” by the more often force determination. The time step scheme,
in contrast, exhibits thetemporalbehaviour of the intervals for re–calculation of the full force
in order to maintain the exactness of the trajectory; time steps chosen too small slow down the
advancing calculation losing the computer’s efficiency.
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11 KS–Regularization

The fourth main feature of the codes since NBODY3 is a special treatment ofclose binaries. A
close encounter is characterised by an impact parameter that is smaller than the parameter for a 90
degree deflection

p90 = 2G(m1 +m2)/v2
∞ (13)

whereG, m1, m2, v∞ are the gravitational constant, the masses of the two particles and their relative
velocity at infinity. In the cluster centre, it is very likely that two (or even more) stars come very
close together in a hyperbolic encounter. As the relative distance of the twobodies becomes small
(R→ 0), their timesteps are reduced to prohibitively small values, and truncation errors grow due
to the singularity in the gravitational potential, eqs. (1) and (2). In the NBODYcode, the parameter
RMIN is used to define a close encounter, and it is kept to the value of equation 13 (if KZ(16) > 0
is chosen in the control parameters). The corresponding time step DTMIN can be estimated from

dtmin = κ
[ η

0.03

]( r3
min

〈m〉
)1/2

(14)

whereκ is a free numerical factor,η the general time step factor, and〈m〉 the average stellar mass
[2]. If two particles are getting closer to each other than RMIN, and their time steps getting smaller
than DTMIN, then they are candidates for “regularization”.

Regularization is an elegant trick in order to deal with such particles which are as close as the
diamond in the Figure 10.1. The idea is to take both stars out of the main integrationcycle, replace
them by their centre of mass (c.m.) and advance the usual integration with this composite particle
instead of resolving the two components. The two members of the regularized pair (henceforth KS
pair) will be relocated to the beginning of all vectors containing particle data,while at the end one
additional c.m. particle is created (see below). One of the purposes of the code variable NAME(I)
is to identify particles after such a reshuffling of data.

To be actually regularized, the two particles have to fulfil two more sufficientcriteria: that they
are approaching each other, and that their mutual force is dominant. In theequations in routine
sear
h.f, these sufficient criteria are defined as

R ·V > 0.1
√

(G(m1 +m2)R

γ := |apert|·R2

G(m1+m2)
< 0.25

Here,apert is the vectorial differential force exerted by other perturbing particles onto the two
candidates,R, R, V are scalar and vectorial distance and relative velocity vector between thetwo
candidate, respectively. The factor 0.1 in the upper equation allows nearly circular orbits to be
regularized;γ < 0.25 demands that the relative strength of the perturbing forces to the pairwise
force is one quarter of the maximum. These conditions describe quantitativelythat a two-body
subsystem is dynamically separated from the rest of the system, but not unperturbed.

The internal motion of a KS pair will be determined by switching to a different (regularized)
coordinate system. This transformation can be traced back to the square in quaternion space, where
— by sacrificing some commutativity rules — it is guaranteed that the real-spacemotion does not
leave the three-dimensional Cartesian space. It involves a set of four regular spatial coordinates
and a fictitious times(t), obtained in its simplest variant by the transformationdt = Rds. Any
unperturbed two–body orbit in real space is mapped onto a harmonic oscillator in KS–space with
double the frequency. Since the harmonic potential is regular, numerical integration with high
accuracy can proceed with much better efficiency, and there is no danger of truncation errors for
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arbitrarily small separations. The internal time–step of such a KS–regularized pair is independent
of the eccentricity and, depending on the parameter ETAU, of the order ofsome 50–100 steps
per orbit. The method of regularization goes back to [14] and makes an accurate calculation of a
perturbed two–body motion possible. A modern theoretical approach to this subject can be found
in [25]; the Hamiltonian formalism of the underlying transformations is nicely explained in [20].

While regularization can be used for any analytical two–body solution across a mathematical
collision, it is practically applied to perturbed pairs only. Once the perturbation γ falls below
a critical value (input parameter GMIN≈ 10−6), a KS–pair is considered unperturbed, and the
analytical solution for the Keplerian orbit is used instead of doing numericalintegration. A little
bit misleading is that such unperturbed KS–pairs are denoted in the code as”mergers”, e.g. in the
number or merges (NM) and the energy of the mergers (EMERGE). Merged pairs can be resolved
at any time if the perturbation changes. The two–body KS regularization occurs in the code either
for short-lived hyperbolic encounters or for persistent binaries.

In the code, the KS–pair appears as a new particle at the postion of the centre of mass. The va-
riable NTOT, that contains the total number of particlesN plus the c.m.’s, is increased by 1. When
the pair is disrupted, NTOT is decreased again. The maximum number of possible KS–pairs is
saved in the variable KMAX, which sets a threshold for the extension of the vector NTOT (see
Chapter 5).

Close encounters between single particles and binary stars are also a central feature of clu-
ster dynamics. Such temporary triple systems often reveal irregular motions,ranging from just a
perturbed encounter to a very complex interaction, in which disruption of binaries, exchange of
components and ejection of one star may occur. Although not analytically solvable, the general
three–body problem has received much attention. So, the KS–regularization was expanded to the
isolated 3– and 4–body problem, and later on to the perturbed 3–, 4–, and finally to theN–body
problem. The routines are called

• triple.f (unperturbed 3-body subsystems, [8]),

• quad.f (unperturbed 4-body subsystems), and

• 
hain.f with different stages of implementation (slow-down, Stumpff functions, see for
consecutive references Mikkola & Aarseth 1990, 1993, 1996, 1998, and [20]).

While occurrences of “triple” and “quad” will be rare in a simulation, the chain regularization is
invoked if a KS–pair has a close encounter with another single star or another pair. Especially,
if systems start with a large number of primordial binaries, such encountersmay lead to stable
(or quasi-stable) hierarchical triples, quadruples, and higher multiples.They have to be treated
by using special stability criteria. Some of them are actually already implemented,but there is
ongoing research and development in the field.

A typical way to treat all such special higher subsystems is to define their c.m.to be a pseudo-
particle, i.e. a particle with a known sub-structure (very much like nodes in a TREE code). The
members of the pseudo-particles will be deactivated by setting their mass to zero (ghost particles).
At present there can only exist one chain at a time in the code, while merged KS binaries, and
hierarchical subsystems can be more frequent. Details of these procedures are beyond the scope
of this introductory manual.

Every subsystem — KS pair, chain or hierarchical subsystem — is perturbed. Perturbers are
typically those objects that get closer to the object thanRsep= R/γ1/3

min, whereR is the typical size
of the subsystem; for perturbers, the components of the subsystem are resolved in their own force
computation as well (routines
mfreg.f, 
mfirr.f).
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12 Nbody–units

The NBODY–code uses Dimensionless units, so–called “Nbody units”. They are obtained when
setting the gravitational constantG and the initial total cluster massM equal to 1, and the initial
total energyE to−1/4 (see [12], [7]).

Since the total energyE of the system isE = K +W with K = 1
2M〈v2〉 being the total kinetic

energy andW = −(3π/32)GM2/R the potential energy of the Plummer sphere, we find from the
virial theorem that

E =
1
2

W = −3π
64

GM2

R
. (15)

R is a quantity which determines the length scale of a Plummer sphere. Using the specific defini-
tions forG, M, andE above, this scaling radius becomesR= 3π/16 in dimensionless units. The
half mass radiusrh can easily be evaluated by the formula (e.g. [26]):

M(r) = M
r3/R3

(1+ r2/R2)3/2
(16)

when settingM(rh) = 1
2M. It yieldsrh = (22/3−1)−1/2R= 1.30R. The half–mass radius is located

atR= 0.766, or about 3/4 “Nbody–radii”.
The virial radius of a system is defined byRvir = GM2/2|W|, while the r.m.s. velocity is

〈v2〉1/2 = 2K/M. In virial equilibrium |W| = 2K, so it follows for the crossing time

tcr :=
2Rvir

〈v2〉1/2
=

GM5/2

(2|E|)3/2
. (17)

The setting ofG = M = 1 andE = −0.25 also determines the unit of time; so it follows that
tcr = 2

√
2 in N-body units. By inversion we have

τNB =
GM5/2

(4|E|)3/2
, (18)

for the unit of timeτNB. The virial radius of Plummer’s model isRvir = 1 in N-body units.
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13 Output

Tabelle 17: Definition of parameters

Global properties
Time time of simulation
RSCALE Half mass radius
RTIDE Tidal radius
RC Core radius
NC Number of stars inside core radius
VC r.m.s velocity inside core radius
〈M〉 Average mass of star
M1 Mass of most massive star
ZMASS Total mass of cluster
MODEL
NRUN Run identification index
TIDAL4 Twice angular velocity

Energy
BE(1) Intial total energy
BE(2) Last adjust total energy
BE(3) Current total energy
ZKIN Kinetic energy
POT Potential energy
ETIDE Tidal energy
ETOT Total energy
E Mechanical energy: ZKIN - POT + ETIDE (3)
ESUB Binding energy of unperturbed triples and quadruples
EMERGE Binding energy of mergers (9)
EBIN Binding energy of KS binaries
ECOLL The difference of binding energy of inner binary at the end and begin

of hierarchical systems (10)
EMDOT Mechanical energy of mass loss due to stellar evolution (12)
ECDOT Energy of velocity kick due to stellar evolution
ECH Binding energy of chain
EBINP Primordial KS binary energy (1)
EBINN Energy of new KS binary formed by dynamics (2)
EESCS Single escaper mechanical energy (4)
EESCPB Binding energy of primordial KS binary escapers (5)
EESCPC Mechanical energy of center mass of primordial KS binary escapers (6)
EESCNB Binding energy of new formed KS binary escapers (7)
EESCNC Mechanical energy of center mass of new formed KS binary escapers

(8)
Scaling factors

RBAR PC
TSCALE Myr
TSTAR Myr
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VSTAR km/s
RAU AU
ZMBAR Solar mass
SU Solar radius

Astronomical units
R* Solar radius
L* Solar luminosity
M* Solar mass

Counters
NTOT Total number of particles (include all binary component, single star and

center mass)
N Total number of stars (binary count as two stars)
NS Single star number
NPAIRS Number of KS regularization particles
NMERGE Number of Mergers (stable triples)
NZERO Initial particle number (2* binaries + singles, initial N)
NB0 Primordial binary number

For stars
I Index of star (position in particle data array)
NAME Identification of individual star, it’s constant and unique value for each

star (exclude un-physical particles like center mass and ghost) during
whole simulation

K* KSTAR type, see Table
M Mass of star
X(1:3) Three dimension position
V(1:3) Three dimension velocity
DM Current mass loss due to stellar evolution
DMA Accumulated mass loss due to stellar evolution
STEP Irregular time step of star
STEPR Regular time step of star
ZKIN Kinetic energy
POT Potential
NB Neighbor number
RNB Neighbor radius
RHO Mass density of individual star calculated by nearest 5 neighbors, (only

avaiable for particles inside core radius

Stellar evolution of star
RS star radius
L luminosity
Teff effective temperature
ROT angular velocity of star

For binaries
SEMI semi-major axis
ECC eccentricity
PERI Pericenter distance



41

R12 distance between two members of binary
RI distance to density center
VI velocity of center mass
P Orbit period
I1/I2 Index for binary component 1/2 (Not always equal name)
ICM Index for center mass particle (Not always equal name)
NP perturber number
H energy per unit mass
EB Binary energy: M(I1)*M(I2)/M(ICM)*H
GAMMA Perturbation to KZ binary
IPAIR Index for binary
STEP(I1) KS time step of binary
TC circularization timescale for current pericenter
FLAG-PB Primordial binary indicator. -1: Primordial bianry; 0: New binary
INEW Index of new star generated by binary collision or coalescence

For hierarchical systems
IM merger index
IMC Number count of current merger
INPAIR Index of inner binary
INCM Inner binary center mass index
NAME(IM) Merger center mass name
I1/I2 Inner binary two component indexs
I3 Outer particle index
ECC0 Inner binary orbit eccentricity
ECC1 Outer orbit eccentricity
EB0 Inner binary energy
EB1 Outer orbit energy
P0 Inner binary orbit period
P1 Outer orbit period
R12 Inner binary components seperation
RIN3 Seperation between inner center mass and outer component
TG Inner orbit eccentricity growth timescale
ECCMIN Minimum eccentricity of inner binary orbit
ECCMAX Maximum eccentricity of inner binary orbit
PERIM smallest pericenter distance of outer particle orbit
PCR Stability triple system criterion for PERIM (assess.f), the real stability

criterion is more complicated and depend on the ECC1
SEMI0 Inner binary orbit semi-major axis
SEMI1 Outer orbit semi-major axis
INA Inclination angle in unit degree
FLAG-H Hierarchical system indicator. -1: merger, triple, chaotic binary, tidal

circularization binary...; 0: normal binary
For quadriple systems

OCM Outer binary center mass index
OCPAIR Index of outer binary
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I3/I4 Outer binary two component index
ECC2 Outer binary eccentricity
EB2 Outer binary energy
SEMI2 Outer binary orbit semi-major axis
R34 Outer binary components seperation
DP34 Difference potential correction for the outer binary

For chain
IC Chain index
NCH Number of chain members
ECH Total energy of perturbed system (N-body interface)
NP Perturbers of chain
ENERGY Total energy of chain
RSUM Sum of all chain distances
RGRAV Gravitational radius ((sum M(I)*M(J))/ABS(ENERGY))
TCR Local crossing time ((sum M(I))**2.5/ABS(2*ENERGY)**1.5)
RMAXS Maximum size of unperturbed configuration
RIJ(i-j) Distance between member i and j
ICM1 First binary index after termination
ICM2 Second binary index after termination

For kick
M0 mass before kick
MN mass after kick
VK kick velocity after limit check
VI Velocity before kick of kicked star in cluster
VF Final velocity of kicked star in cluster
VK0 Kick velocity generated from Henon’s method (Douglas Heggie

22/5/97)
FB Fallback ratio, VK = VK*(1-FB)
VESC cluster escape velocity
VDIS escape velocity from binary system: SQRT(2*M(ICM)/R12)

Tabelle 18: Notice for Table19

File format
Header-* The Header of file with line number *, the description of it is shown in

the right cell.
H-Label-* Content labels are shown at the line number *, data begin from the next

line
F-Label Content labels are shown at the beginning of each line
I-Label Content labels are shown before each data
N-Label No labels in file

Frequency (freq.)
Tevent Output when event is triggered
T0 Output during initialization
∆Tout Output time interval (input parameter DELTAT)
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∆Tad j Adjust time interval (input parameter DTADJ)
∆THR Stellar evolution output time interval (input parameter DTPLOT)
NFIX Frequency of output (input parameter)

option
#[num] KZ option [num]
‖ logical or
&& logical and
CHAIN Use chain: #15> 0&& (#30> 0‖#30= −1)

USE_GPU switch on GPU during compiling code
USE_HDF5 switch on HDF5 during compiling code

Table19 show all output files ofNBODY6++. The filename will be named as “[name].[unit]”. The
first column [name] with suffix “*” means this file will output as seperated snaphshots splitted by
Time[NB] (shown as suffix of file name).

Tabelle 19: Output file information)

name unit code option freq. content

conf* 3 output.F #3> 0 ∆Tout

×
NFIX

Basic data snapshots

Header-1 NTOT, MODEL, NRUN, NK
Header-2 Time[NB], NPAIRS, RBAR, ZMBAR, RTIDE, TIDAL4, RDENS(1:3),

Time/TCR, TSCALE, VSTAR, RC, NC, VC, RHOM, CMAX, RSCALE,
RSMIN, DMIN1

N-Label M, RHO, XNS, X(1:3), V(1:3), POT, NAME (All in NB unit)
Notice the file is unformatted (binary file). Each item output continually from 1 toNTOT.
All items output in one line after two header lines.
NK : The number of parameter in Header-2, right now is always 20
TCR : Crossing time
RHOM : maximum mass density / half mass mean value
CMAX : Maximum number density / half mass mean value
RSMIN : Smallest neighbor radius obtained in last output (output.F) time
DMIN1 : Smallest two body distance
XNS : The fifth nearest neighbor distance, (only avaiable for particles inside core radius

degen 4 degen.f #9≥ 3 Tevent Binary with degenerate stars
Header-1 RBAR, 〈M〉[M*], M1[M*], TSCALE, NB0, NZERO
H-Label-2 ICASE, Time[Myr], SEMI[AU], ECC, PERI/RS, P[days], RI[PC],

M(I1)[M*], M(I2)[M*], K*(I1),K*(I2),K*(ICM), NAME(I1),NAM E(I2)
ICASE: 3: normal binary; 4: CE binary; 5: physical collision binary
PERI/RS: Pericenter / maximum stellar radius of two members

lagr 7 lagr.f #7≥ 3 ∆Tout Lagrangian radii, average mass, ave-
rage velocity, velocity dispersion out-
put (Calculation of Lagrangian radii
use initial total mass of cluster)

Header-1 Labels and columns number for each output
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H-Label-2 Rlagr, Rlagr,s, Rlagr,b, 〈M〉, NShell, 〈Vx〉, 〈Vy〉, 〈Vz〉, 〈V〉, 〈Vr〉, 〈Vt〉, σ2,
σ2

r ,σ2
t ,〈Vrot.〉 (All in NB unit)

For each items above, there are 18 columns with different mass fraction(%): 0.1, 0.3, 0.5,
1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 100 and inside core radius (exclude
Rlagr,s, Rlagr,b)
Rlagr: Lagrangian radius
Rlagr,s: Single star Lagrangian radius
Rlagr,b: KZ binaries Lagrangian radius
〈M〉: average mass of a spherical shell defined byRlagr

〈Vx/y/z〉: mass weighted average velocity in x/y/z direction within a shell
〈Vt〉: mass weighted average tangential velocity within a shell
〈Vr〉: mass weighted average radial velocity within a shell
σ2: mass weighted velocity dispersion square within a shell
σ2

r : mass weighted radius velocity dispersion square within a shell
σ2

t : mass weighted tangential velocity dispersion square within a shell
〈Vrot.〉: mass weighted average rotational velocity projected in x-y plane within a shell

bdat 8 ksin2.f #8> 0 Tevent New hierarchical (B-S)-S binary in-
formation

ksinit.F #8> 0 New binary information
ksterm.F #8> 0 End binary information

I-Label Time[NB], NAME(I1) NANE(I2), FLAG-PB, M(I1)[NB], M(I2)[NB] ,
EB[NB], SEMI[NB], R12[NB], GAMMA[NB], RI[NB]

bdat* 9 bindat.f #8≥ 2 ∆Tout KS binary output
Header-1 NPAIRS, MODEL, NRUN, N, NC, NMERGE, Time[NB], RSCA-

LE[NB], RTIDE[NB], RC[NB], Time[Myr], ETIDC[NB], 0
Header-2 EBINP, EBINN, E, EESCS, EESCPB, EESCPC, EESCNB, EESCNC,

EMERGE, ECOLL (All in NB unit)
Header-3 SBCOLL, BBCOLL, ZKIN, POT, EBIN0, EBIN, ESUB, EMERGE,

BE(3), ZMASS, ZMBIN, CHCOLL, ECOLL (All in NB unit)
H-Label-4 NAME(I1), NAME(I2), M1[M*], M2[M*], E[NB], ECC, P[days],

SEMI[AU], RI[PC], VI[km/s], K*(I1), K*(I2), ZN[NB], RP[NB],
STEP(I1)[NB], NAME(ICM), ECM[NB], K*(ICM)

ETIDC[NB]: escape energy due to tidal force
SBCOLL: The difference of binding energy of inner binary at the end and begin of unper-
turbed triples
BBCOLL: The difference of binding energy of inner binary at the end and begin of un-
perturbed B-B quadruples
ZMBIN : Total KS binary mass
CHCOLL: The difference of binding energy of inner binary at the end and begin of chain

dat 10 start.F #22= 1 T0 Basic data after initialization
N-label M[NB], X(1:3)[NB], V(1:3)[NB]

esc 11 escape.f #23 = 2,
4

∆Tad j escape star output

H-Label-1 Time[Myr], M[M*], EESC, VI[km/s], K*, NAME
EESC: dimensionless escape energy
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hiarch 12 hiarch.f #18 = 1,
3

Tevent New/End stable hierarchical system
(mergers) information

Header-1 RBAR, 〈M〉[M*], M1[M*], TSCALE, NB0, NZERO
F-Label Time, SEMI0, SMEI1, ECC1, PERI0, PERI0M, P1/P0,

M(INCM)/M(I3), PCR/SEMI0, M(INCM)/<M>, MR, INA, NAME(I1),
NAME(I2), NAME(I3), K*(INCM), ECC0, ECCMIN, ECCMAX,
K*(I1), K*(I2), RSM (All in NB unit)

F-Label Time RI/RC, SEMI0, ECC0, PERI0, P0F/P0I, RC/RSCALE, GAM-
MA(INCM), NKI, NKF, NPAIRS, NAME(I2) (All in NB unit)

PERI0 : Inner binary pericenter distance
PERI0M : Inner binary minimum pericenter distance
MR : Mass ratio of two members of inner binary (> 1)
PSM : maximum stellar radius of two members of inner binary
P0F/P0I: Period of inner binary at the end of merger over at the beginningof merger
NKI: Orbit number the inner binary have during the life of merger over the period of inner
binary at the beginning of merger
NKF: Orbit number the inner binary have during the life of merger over the period of
inner binary at the end of merger

coll 13 mix.f #19≥ 3 Tevent Mixed star (physical collision of bina-
ry without evolved stars) information

Header-1 RBAR, 〈M〉[M*], M1[M*], TSCALE, NB0, NZERO
H-Label-2 TIME[NB], NAME(I1), NAME(I2), K*(I1), K*(I2), K*(INEW),

M(I1)[M*], M(I2)[M*], M(INEW)[M*], DM[M*], RS(I1)[R*],
RS(I2)[R*], RI/RC, R12[R*], ECC, P[days]

shrink 14 shrink.f Tevent Diagnostics for shrink regular time
step when high velocity star coming

F-Label I, RN, FI/FJ, DT, STEPR (All in NB unit)
RN: Next distance from high velocity star after DT
FI/FJ: force at minimum distance / current force
DT: evaluated time of minimum approach and truncate to next time

mix 15 mix.f #19≥ 3 Tevent Mixed star information for the case
NS/BH form

F-Label K*(I1), K*(I2), K*(INEW), M(I1)[M*], M(I2)[M*], M(INEW)[ M*]

hirect 16 hirect.f #27 = 2
(hi-
grow.f) ‖
#34 > 0
(brake2.f)
‖ #28> 0
(brake3.f)

Tevent Diagnostics for rectification of hierar-
chical binary due to the internal ener-
gy change of system.

F-Label Time[Nb],NAME,K*,ECC,R12/SEMI,H,DB,DH/H
H: inner binary energy
DM: change of binding energy

ksrect.f Tevent Diagnostics for rectification of KS or-
bit.

F-Label Time[NB], IPAIR, R12/SEMI, H, GAMMA, DB, DH/H
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binev 17 binev.f #9≥ 2 Tevent Binary evolution stage, output when
binary change type

H-Label-1 Time[Myr], NAME(I1), NAME(I2), K*(I1), K*(I2), K*(ICM),
M(I1)[M*], M(I2)[M*], RS(I1)[R*], RS(I2)[R*], RI[PC], EC C,
SEMI[R*], P[days], IQCOLL

IQCOLL: Type of stage, need table in the future

pbin 18 binout.f #8> 0 ∆Tout Diagnostics for the primordial binary
which change members

I-Label Time[NB], NAME(I1), NAME(I2), Flag-PB, Flag-H, M(I1)[NB],
M(I2)[NB], EB[NB], SEMI[NB], ECC, GX, RI[NB], VR[NB]

GX: maximum (near apocenter) perturbation
VR: radial velocity

bwdat* 19 bindat.f #8≥ 2 Wide Non-KS bianry output
Header-1 Time[NB],Time[Myr], N
H-Label-2 NAME(I1), NAME(I2), M1[M*], M2[M*], E[NB], ECC, P[days], SE-

MI[AU], RI[PC], VI[km/s], K*(I1), K*(I2)

symb 20 mdot.F #19≥ 3 Tevent Symbiotic stars information
F-Label NAME, K*, Time[Myr], M[M*], SEMI[R*], DM, DMA??

JC: Companion star index
DMX(JC): Mass loss from stellar wind of companion star
DMA: Accretion mass from companion star

rocdeg 22 roche.f #34> 0 Tevent Roche overflow binary involving de-
generate objects

F-Label NAME(I1), NAME(I2), K*(I1), K*(I2), M(I1)[M*], M(I2)[M*] , Ti-
me[Myr], SEMI[R*], P[days], MD(I1)[M*/Myr], MD(I2)[M*/Myr]

MD: Mass loss rate

ibeigen 23 binpop.F (#8= 1 ‖
#8 ≥ 3)
&&
#42= 6

T0 Initial binary data by using eigen-
evolution

F-Label ITER, I1, M(ICM)[M*], ECCI, ECCC, SEMII, SEMIC, P[days]
ITER: iteraction times to generate parameter that satisfy the input criterions
ECCI: initial eccentricity from thermal distribution
ECCC: circularized eccentricity
SEMII: initial semi-major axis generated by ECC0 and period
SEMIC: circularized semi-major axis generated by ECCC and period

coal 24 coal.f #19≥ 3 Tevent binary coalescence (Stellar type with
cores and circular orbit)

Header-1 RBAR,〈M〉,M1,TSCALE,NB0,NZERO
H-Label-2 TIME[NB], NAME(I1), NAME(I2), K*(I1), K*(I2), K*(INEW), I Q-

COLL, M(I1)[M*], M(I2)[M*], M(INEW)[M*], DM[M*], RS(I1)[ R*],
RS(I2)[R*], RI/RC, R12[R*], ECC, P[days], RCOLL[R*], EB[NB],
DP[NB], VINF[km/s]

DP: Potential energy correction to perturbers due to binary changed to single star
RCOLL: binary distance before coalescence
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VINF: Infinite velocity for hyperbolic coalescence

sediag 25 unpert.f #27> 0 Tevent Diagnostics for the stellar evolution
next look-up time of unpert KS

F-Label IPAIR, K*(I1), K*(I2), K*(ICM), TEVNXT[NB], STEP(I1)[NB] (No
more output when NWARN≥ 1000)

TEVNXT: Next time to check stellar evolution

highv 29 hivel.f Tevent Diagnostics for high-velocity particle
added or removed from LISTV

F-Label (REMOVE) Time[NB], I, NAME, RI(NB), VI(NB)
F-Label (ADD NS, terminated KS/chain) Time[NB], NHI, I, NAME, K*,

VI[NB], RI[NB], STEP[NB]
F-Label (ADD fast single) Time[NB], NHI, NAME, IPHASE, VI[NB], RI[NB],

STEP[NB]
F-Label (ADD hyperbolic two-body motion) Time[NB], NHI, NAME(I1), NA-

ME(I2), IPHASE, RIJ[NB]
NHI: high-velocity particle number
IPHASE: Internal status of code (check nbody6.F for detail)

global 30 output.F ∆Tout Globar features of cluster and coun-
ters

H-Label-1

lagr1 31 lagr2.f #7≥ 5 ∆Tout Two mass group systems Lagrangian
radii (First group)

N-Label Time[NB], Rlagr[NB] (mass fraction: 0.01, 0.02, 0.05 ,0.1, 0.2, 0.3, 0.4,
0.5, 0.625, 0.75, 0.9) (Here calculation ofRlagr use the current total mass)

lagr2 32 lagr2.f #7≥ 5 ∆Tout Two mass group systems Lagrangian
radii (Second group)

N-Label see Unit 31

ns 33 degen.f #9≥ 3 Tevent Neutron stars(never used)
F-Label I, NAME, IFIRST, K*, Time[Myr], VI[km/s]

bh 34 degen.f #9≥ 3 Tevent Black holes(never used)
F-Label I, NAME, IFIRST, K*, Time[Myr], VI[km/s]

sediag 38 expel2.f #19 ≥ 3
&&
Chain

Tevent Diagnostics for common envelop type
change

N-Label
mix.f #19≥ 3 Tevent Diagnostics for mixed stars

N-Label
trflow.f #19≥ 3 Tevent Diagnostics for iteration convergency

check
N-Label

stellar evolution health check

hbin 39 adjust.F #9= 1,3 ∆Tout The hardest binary below ECLOSE
F-Label Time[NB], NAME(I1), NAME(I2), K*, NP, ECC, SEMI[NB], P[days],

EB[NB], EM[NB]
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data
.h5part

40 custom_
output.F

USE_
HDF5
&&
#46> 0

#47 HDF5 or CSV output of basic data

NAME, TIME[NB], X(1:3)[NB], V(1:3)[NB], M[NB], F[NB], FD[NB ],
K*, RHO[NB], PHI[NB], L[L*], RS[R*], Teff[K], MCORE[M*], R S-
CORE[R*]

RHO: Local density
PHI: potential
MCORE: Stellar core mass
RSCORE: Stellar core radius

nbflow 41 fpoly0.F USE_GPU T0 Diagnostics for neighbor list overflow
from GPU regular force initialization

F-Label NSTEPR, NAME, NB, RNB[NB], RI[NB]
util_gpu.F USE_GPU Tevent Diagnostics for neighbor list overflow

from GPU regular force calculation
I-Label I,NAME, NNPRE, NBNEW, RNB[NB], RI[NB], Time[NB]

NBPRE: previous neighbor number
NBNEW: new neighbor number that cause overflow

ibcoll 42 binpop.F #8 = 1,≥
3

T0 Diagnostics for the binary physical
collision cases when initialize primor-
dial binaries

I-Label I1, M(I1)[M*], M(I2)[M*], ECC, SEMI[AU], PERI[R*], RS(I1) [R*],
RS(I2)[R*]

sediag 43 mdot.F #19≥ 3 Tevent Diagnostics of warning when stellar
radius expand more than 1.5x

F-Label I, NAME, Time[Myr], DT[Myr], K*0, K*N, M0[M*], MN[M*],
RS0[R*], RSN[R*]

K*0: previous stellar type
K*N: new stellar type
M0: initial stellar mass
MN: current new stellar mass
RS0: previous stellar radius
RSN: new stellar radius

hinc 44 induce.f #27> 0 Tevent Information of high inclinations and
TC2< 107 yrs of hierarchical binary

F-Label ECC0, ECCMIN, ECCMAX, K*(I1), K*(I2), K*(ICM), SEMI0[NB],
PERIM[NB], IN, TG[Myr], TC[Myr], TCM[Myr], Time[Myr]

IN: Indicator of inclination: 1 + AIN[rad]*360/(2*pi*22.5), where AINis inclination an-
gle
TCM: circularization timescale for smallest pericenter

mbh 45 bhplot.f #24= 1 ∆TBH Mass black hole information
H-Label-1 STAT, Time[Myr], IBH, X(1:3)[PC], V(1:3)[km/s], NB, XA-

VE(1:3)[AU], VAVE(1:3)[km/s], DEN[M*/PC3], RIJMAX[PC],
VSIGMA(1:3)[km2/s2]

Notice the XAVE, VAVE, DEN, VSIGMA is not accurate due to the neighbor criterion
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STAT: show whether black hole is in binary system or single
IBH: Index of massive black hole
XAVE: density center vector of black hole neighbors (relative to black hole velocity)
VAVE: average velocity vector of black hole neighbors (relative to blackhole velocity)
DEN: local density of black hole calculated by neighbors within RNB (exclude black hole
mass)
RIJMAX: maximum distance from neighbor star to black hole
VSIGMA: 3-dimensional velocity dispersion of black hole neighbors (relative to black
hole velocity)

mbhnb 46 bhplot.f #24= 1 ∆TBH Mass black hole neighbor information
Header-1 Time[Myr], NB
N-Label NAME, M[M*], XREL(1:3)[AU], RIJ[AU], VREL(1:3)[km/s], K*

XREL: position vector relative to black hole
RIJ: distance to black hole
VREL: velocity vector relative to black hole velocity

itid3 52 xtrnl0.F #14= 3 T0 Initialization of circular velocity in the
plane for galaxy tidal force

F-Label VC[km/s], RI[KPC]
VC: circular velocity

hypcep 54 ksint.f #19≥ 3 Tevent Close encounter for hyperbolic moti-
on (pericenter< 5.0× Maximun stel-
lar radius of two stars

F-Label Time[NB], NAME(I1), NAME(I2), K*(I1), K*(I2), VINF[km/s],
RCAP[R*], RX[R*], PERI[R*]

VINF: Infinite velocity of encounter
RCAP: Capture distance of hyperbolic encounters (binary will form)
RX: Maximum stellar radius of two stars

hypcec 55 ksint.f #19≥ 3 Tevent Close encounter for hyperbolic moti-
on (physical collision case)

F-Label Time[NB], IPAIR, NAME(I1), NAME(I2), K*(I1), K*(I2), K*(ICM ),
VINF, ECC, H[NB], R12[NB], SEMI[NB], PERI[NB], M(I1)[NB],
M(I2)[NB], M(ICM)[M*], RI[RC], VI[km/s], RHOD, RS(I1)[R*],
RS(I2)[R*], RCAP[R*], RX/PERI, RCOLL/PERI

RHOD: Density weighted average densityΣRHO2/ΣRHO
RCOLL: If #27> 2 relativistic collision criterion, else is normal collision criterion
RX: Maximum stellar radius of two stars

*fort 60 ellan.f #49> 0 ∆Tout Moments of Inertia ??
N-Label ??

cirdiag 71 spiral.f #27> 0 Tevent Diagnostics for skip removal of cha-
os binary if this is member of sin-
gle/double (stable quadruple) merger.

F-Label NCHAOS, NAMEC, NAME(IM), NAME(I3)
NCHAOS: Number of chaos binary
NAMEC: Name for chaos binary
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histab 73 impact.f #15> 0 Tevent Diagnostics of checking Zare ex-
change stability criterion (exchange of
outer particle and inner member of bi-
nary), but the slingshot still can hap-
pen, thus not triple system stablility
criterion.

F-Label Time[NB], M(I3)/M(INCM), ECC0, ECC1, SEMI0[NB], PERIM[NB],
PCR[NB], TG[Myr], SP, INA[deg], K*

SP:>= 1, no exchange;< 1, will be exchange

cirdiag 75 decide.f #27= 2 Tevent Diagnostics output for large eccentri-
city (> 0.9) during merger decision
(deny stable triple forming if circula-
rization timescale is short).

F-Label NAME, Time[NB], ECC0, ECC1, EMIN, EMAX, ECCD[1/Myr],
EDT[NB], TG[Myr], TC[Myr], EDAV[1/Myr], PERIM[RSM]

ECCD: eccentricity change rate
EDAV: average eccentricity change rate
RSM: maximum stellar radius of two stars
EDT: Tidal circularization timescale for current eccentricity

kscrit 77 chmod.f #16 > 2
&&
CHAIN

Tevent Diagnostics for increasing or de-
creasing regularization parameters in
chain

F-Label Time[NB], KSMAG, GPERT, RMIN, RIJ[NB]
KSMAG: indicator of increasing and decreasing times
GPERT: dimensionless perturbation of chain
RMIN: distance criterion for regularization (also is input parameter)
RIJ: distance between chain center mass and perturber

chstab 81 chstab.f CHAIN Tevent New hierarchical system with stability
condition for bound close pair (RB>
semi) (form from 4th body escape or
perturber make it stable).

I-Label TIMEC, RI[NB], NAME(I3), M(I3)/M(INCM), ECC0, ECCMAX,
ECC1, SEMI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]
cstab2.f CHAIN Tevent Check hierarchical stability condition

(SEMI1> 0⇒ ECC1< 1).
N-Label TIMEC[NB], RI[NB], NAME(I3), ECC0, ECC1, ECCMAX, SE-

MI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]
cstab3.f CHAIN Tevent Continue chain integration if outer or-

bit unstable or large pert.
N-Label TIMEC[NB], RI[NB], NAME(I3), ECC0, ECC1, ECCMAX, SE-

MI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]
cstab4.f CHAIN Tevent Check hierarchical stability condition

for bound close pair.
N-Label TIMEC[NB], RI[NB], NAME(I3), ECC0, ECC1, ECCMAX, SE-

MI0[NB], SEMI1[NB], PCR/PERIM, INA[deg]
TIMEC: time when chain formed
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bev* 82 hrplot.F #12> 0 ∆THR KS binary stellar evolution data
Header-1 NPAIRS, Time[Myr]
N-Label Time[NB], I1, I2, NAME(I1), NAME(I2), K*(I1), K*(I2), K*(ICM ),

RI[RC], ECC, log10(P[days]), log10(SEMI[R*]), M(I1)[M*],
M(I2)[M*], log10(L(I1)[L*]), Log10(L(I2)[L*]), Log10(RS (I1)[R*]),
Log10(RS(I2)[R*]), Log10(Teff(I1)[K]), Log10(Teff(I2)[K])

sev* 83 hrplot.F #12>0 Single star stellar evolution data
Header-1 NS, Time[Myr]
N-Label Time[NB], I, NAME, K*, RI[RC], M[M*], log10(L[L*]),

log10(RS[R*]), log10(Teff[K])

merger 84 bindat.f #8≥ 2 ∆Tout Extra mergers information (main mer-
ger output is in hidat.87_*)

F-Label Time[NB], NAME[I1], NAME[I3], K*[I1], K*[I3], K*[IM], ECC0,
ECC1, PERI(I3)/PCR, PERI(INCM)[RSM], P0[days], P1[days],SE-
MI1[NB]

roche 85 roche.f #34> 0 Tevent Roche overflow stage data
H-Label NAME(I1), NAME(I2), K*(I1), K*(I2), Time[Myr], AGE(I1), AGE (I2),

M0(I1), M0(I2), M(I1), M(I2), Z, ECC, P[days], JSPIN(I1), JSPIN(I2),
STAT

AGE: stellar age
JSPIN: angular momentum of star
STAT: type of binary
Z: metallicity
*M0: stellar mass before mass transfer?

hidat* 87 hidat.f #18> 3 ∆Tout Hierarchical data of mergers (stable
triple, quadruples)

Header-1 NPAIRS, NRUN, N, NC, NMERGE, MULT, NEWHI, Time[NB]
H-Label NAME(I1), NAME(I2), NAME(I3), K*(I1), K*(I2), K*(I3), M(I 1)[M*],

M(I2)[M*], M(I3)[M*], RI[NB], ECCMAX, ECC0, ECC1, P0[days],
P1[days]

MULT: number of deeper mergers (4 bodies ((B-S)-S) or 5 bodies ((B-S)-S)-S)
NEWHI: Counter of new hierarchical systems in chain

quastab 89 impact.f #15≥ 3 Tevent Diagnostics for stability criterion of
two binaries quadruples

F-Label Time[NB], NAME(I1), NAME(J1), LQ, RI[NB], ECC1, EB[NB],
EB2[NB], EB1[NB], P1[days], PERIM[NB], PCR[NB]

J1: index of first member in second binary
LQ: orbit counter for diagnostics output
ECC1: outer orbit eccentricity in B-B quadruple
EB: quadruple binding energy
EB1: first binary binding energy
EB2: second binary binding energy
P1: outer orbit period

bs 91 mix.f #19≥ 3 Tevent Blue straggler information
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F-Label Time[NB], NAME(I1), NAME(I2), M(INEW), ECC, P[days],
P(I1)[days], P(I2)[days]

wdcirc 95 spiral.f #27> 0 Tevent Diagnostics for recent WD as the se-
cond component of binary system in-
volving tidal circularization

F-Label Time[NB], NAME(I2), NAME(I1), K*(I1), ROT(I1)[NB],
ROT(I2)[NB], 〈motion〉, SPIN(I2)[NB]

〈motion〉 : sqrt( M(ICM) / (RSM * SEMI)**3) [NB]
*SPIN: spin of star ?

cirdiag 96 hut.f #27> 0 Tevent Diagnostics for reducing steps of inte-
gration equations for eccentricity and
angular velocites of stars (Equation
15.22 in Sverre, 2003’s book)

F-Label NSTEPS, IT, U, UD, DTAU (All in NB unit)
NSTEPS: step number for integration
IT: Iteration times for reduction
U: KS vector U
UD: KS vector UDOT
DTAU: KS integration time step
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14 Python and IDL scripts

TODO

15 AMUSE

TODO
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nbody6.F

read init. parameters

KSTART = 1 ?yesnew run

?

no restart

?

start.F mydump.F

zero.f

input.F

data.F

s
ale.F

units.f

binpop.f

iblo
k.f

nblist.f

fpoly1.f

fpoly2.f

KSTART > 2 ?
no

restart without
any changes

?

yes

modify.F

restart with
some small changes

adjust.F

output.F

- ¾intgrt.F
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intgrt.F

Determine group of particles
due to be advanced;

create list: NXTLST(I)

short.f create a sublist of
shortest times steps

IKS > 0 ? -yes set IPHASE = 1
?

no

TIME > TADJ ? -yes
set IPHASE = 3

?
no

TIME > TNEXT ?
-yes

output.F¾

?
no

TIME > TPREV ?
-yes

subint.f¾

?
no

STEP(I)<DTMIN ? -yes
sear
h.f¾

?
no

NXTLEN > 10 ? yes

?
no

nbsort.f
partial
predict.

prediction of all
particlesnot

to be corrected
¾

nbint.f

treg+dtreg=TIME? -yes
regint.f¾

no

Update new positions
and velocities

Termination ?

yes

STOP

no
-

Continue acc. to IPHASE:

1: ksreg.f

2: ksterm.f
3: adjust.f

4: triple.f

5: quad.f

6: merge.f

7: reset.f

8: 
hain.f

¾

?



56 References

Literaturverzeichnis

[1] Aarseth S.J. (1963): Mon. Not. Roy. Astron. Soc. 126, p223

[2] Aarseth S.J. (1985): “Direct methods for N–body simulations”, in:Multiple Time Scales,
Brackbill J. & Cohen B. (eds.), Ch. 12, p377

[3] Aarseth S.J. (1993): “Direct methods for N–body simulations”, in:Galactic Dynamics and
N–body simulations, Contopoulos G. et. al. (eds.), Symposium in Thessaloniki, Greece

[4] Aarseth S.J. (1999a): Publ. Astron. Soc. Pac. 111, p1333

[5] Aarseth S.J. (1999b): Celect. Mech. Dyn. Astron. 73, p127

[6] Aarseth S.J. (2003): “Gravitational N–Body Simulations, Tools and Algorithms”,Cam-
bridge University Press, 430 pages, ISBN 0521432723

[7] Aarseth S.J., Hénon M., Wielen R. (1974): Astron. Astrophys. 37, p183

[8] Aarseth S.J., Zare . (1974): Celest. Mech. 10, p185

[9] Ahmad A. & Cohen L. (1973): J. Comput. Phys. 12, p389

[10] Cohn H. (1980): ApJ 242, p765

[11] Dorband E.N., Hemsendorf M., Merritt D. (2003): J. Comput. Phys. 185, p484–511

[12] Heggie D.C. & Mathieu R.D. (1986): “Standardised units and time scales”, in:The Use of
Supercomputers in Stellar Dynamics, Hut P. & McMillan S. (eds.), p233

[13] Hénon M. (1971): Astrophys. Space Sci. 14, p151

[14] Kustaanheimo P. & Stiefel E.L. (1965): J. für Reine Angewandte Mathematik 218, p204

[15] Makino J. (1991a): Publ. Astron. Soc. Japan 43, p859

[16] Makino J. (1991b): ApJ 369, p200

[17] Makino J. & Aarseth S.J. (1992): Publ. Astron. Soc. Japan 44, p141

[18] Makino J. & Hut, P. (1988): ApJ Suppl. 68, p833

[19] Makino J., Taiji M., Ebisuzaki T., Sugimoto D. (1997): ApJ 480, p432–446

[20] Mikkola S. (1997): “Numerical Treatment of Small Stellar Systems with Binaries”, in:
Visual Double Stars: Formation, Dynamics and Evolutionary Tracks, Docobo J.A., Elipe
A., & McAlister H. (eds.), p269

[21] Mikkola S. & Aarseth, S.J. (1990): Celest. Mech. Dyn. Ast. 47, p375

[22] Mikkola S. & Aarseth, S.J. (1993): Celest. Mech. Dyn. Ast. 57, p439

[23] Mikkola S. & Aarseth, S.J. (1996): Celest. Mech. Dyn. Ast. 64, p197

[24] Mikkola S. & Aarseth, S.J. (1998): New Astronomy 3, p309



References 57

[25] Neutsch W. & Scherer K. (1992): “Celestial Mechanics”,Bibliographisches Institut, 484
pages, ISBN 3411154810

[26] Spitzer L. jr. (1987): Dynamical Evolution of Globular Clusters, Princeton University
Press, New Jersey, USA

[27] Spurzem R. (1994): “Gravothermal Oscillations”, in:Ergodic Concepts in Stellar Dyna-
mics, Gurzadyan V.G. & Pfenniger D. (eds.), p170

[28] Spurzem R. (1999): J. Comput. Appl. Math. 109, p407

[29] von Hoerner S. (1960): Zeitschrift f. Astrophysik 50, p184–214

[30] von Hoerner S. (1963): Zeitschrift f. Astrophysik 57, p47–82


