
Rainer Spurzem

Parallel Computing with NBODY6++
with and without GPU

Thursday, July 28, 2016, Uni Heidelberg, GPU Block Course

1. Compiling and Running NBODY6++

1.1 Copy and run the code on kepler

rsync -av ~spurzem/worknb6/ worknb6/
cd worknb6
module load cuda/5.0
module load openmpi-x86_64
make clean ; make mpich
ls -ltr

You should find the executable file nbody6.

mv nbody6 Run/

make clean ; make mpichgpu_kepler
ls -ltr

You should find the executable file nbody6.gpu

mv nbody6.gpu Run/

cd Run/
ls -lrt

Here is the batch job script gpu_script.sh . You should run it with
nbody6 for nodes=1,2,4 (gres=gpu:0) and with nbody6.gpu for
nodes=1,2,4 (gres=gpu:1). Always use the student queue #SBATCH -p
Student_GPU . Larger jobs (e.g. with nodes 6,8) will only run in the
GPU queue (#SBATCH -p GPU) and may take long or very long waiting
time. Also set time=00:30:00 in the job script.

The standard input file in5000.comment should be used normally. You
can also try some of the other input files, e.g. in10k.ktg.sev . This will
include astrophysical stellar evolution and produce data for a
Hertzsprung Russell diagram in sev.83.

1.2 Some more information

Usage of .F files:

intgrt.F is pre-processed with C-Preprocessor; it evaluates so-called
preprocessor directives in the source code; they start with # , for
example:

#ifdef PARALLEL
...
#endif

Preprocessor directives are selected with a compiler option:
-D PARALLEL compiles code between #ifdef PARALLEL and #endif.
Without -D PARALLEL these code lines will not be used!
WARNING - never keep .f if you have .F - the preprocessor directives
will fail.

2 Parallel Communication Schemes and
Literature

NBODY6++ runs in the SPMD (Single Program Multiple Data) Scheme.
It means when you start the parallel NBODY6++ run on n cores (by
using the command (mpirun -np n …), n identical copies of the
program will start. In parallel sections these copies of the code share
their work and communicate data with each other through the MPI
functions in the code.

NBODY6++ uses for communication a copy algorithm (all new
information is copied immediately to all nodes); other algorithms are
ring algorithm or (hyper)systolic algorithm, see Dorband, Hemsendorf,

Merritt, 2003 (Journ. Comp. Phys.); Makino (2002). If the number of
particles per node is large enough, all algorithms scale equally well.
The similar but simpler phiGRAPE and phiGPU codes by Berczik and
others (see e.g. Harfst et al. 2007, New Astronomy) use a mixed
algorithm.

The copy algorithm in NBODY6++ is implemented manually with
MPI_SENDRECV. Current modern implementations of MPI_BCAST will
be equally efficient.

3 Hands-On Experiment on parallel computer

3.1 Profiling for NBODY6/6++

The code measures the wall clock time used for many things:

total, regular force, irregular force, adjust, regularised, prediction,
overhead for parallelisation, communication time...

Your task: Do some experiment - run on 1,2,4,... processors, with
and without GPU usage, as explained above

Explanation of times in output (line below 'PE N'):
ttot: total wallclock time
treg: regint, regular force (PAR)
tirr: nbint, neighbour force (PAR)
tadj: energy check (PAR)
tinit: computing of initial model (PAR)
tpred, tprednb: prediction
tmov: overhead for data move
tsub,tsub2: communication time using MPI_SENDRECV
xtsub1,xtsub2: number of bytes transferred

(PAR) means these routines are parallelised (contain shared work and
MPI function).

Plot results for ttot, treg, tirr and tsub+tsub2 as a function of number
of nodes used (1,2,4). What is the maximum speedup we get, without
GPU, with GPU? What is the prediction of Amdahl's law? Compare.
Normalize the speedup for all runs (with and without GPU) always to
the one node run without GPU.

3.2 Example Solution for NBODY6++ Tasks:
Here are my time measurements
(taken from output files out.....):

 PE N ttot treg tirr tpredtot tint tinit tks ttcomm tadj tmov tprednb tsub tsub2 xtsub1 xtsub2
 1 5000 517.01170 447.73 43.23 0.00 504.89 4.20 0.22 0.00 7.83 1.46 6.85 0.00 0.00 0.00000D+00 0.00000D+00
 2 5000 273.74747 226.19 24.01 0.00 266.98 2.28 0.23 0.00 4.38 3.94 6.86 0.69 1.16 2.35923D+09 3.00958D+09
 4 5000 154.28701 110.07 14.23 0.00 150.33 1.29 0.24 0.00 2.56 8.72 6.82 1.72 2.39 3.53682D+09 4.51333D+09
 6 5000 110.29107 74.53 9.87 0.00 107.22 0.98 0.22 0.00 1.99 8.29 6.70 2.15 1.89 3.92945D+09 5.01460D+09
 12 5000 85.25265 40.48 9.90 0.00 82.62 0.69 0.22 0.00 1.83 14.99 6.74 4.48 3.72 4.32197D+09 5.51592D+09

Calculate Amdahl's Law:

Let X be the part of my program (in terms of computing time) which can be
parallelised. The sequential computing time Tseq is normalized to unity (1), and
can be expressed as:

Tseq = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing,
ultrafast communication):

Tpar = X/p + (1-X) with number of processes (number of GPUs) p

Then the speed-up of the program S = Tseq / Tpar :

S = 1 / (1-X+X/p)

Note the limit if p is very large: S = 1/(1-X). We find from our measurements with
NBODY6++ given above: X = (treg + tirr + tinit + tadj) / ttot = 503 / 517 = 0.97 .
Hence S = 1/(0.03 + 0.97/p), for large p max speed-up: S = 1/0.03 = 33.3333
(Note: this is only for 5000 Particles - for larger N we get MUCH higher X...)

Use gnuplot:

set logscale y
plot 'time' u 1:3 w l t'tot', '' u 1:4 w l t 'reg', '' u 1:5 w l t'irr', '' u 1:13 w l t'pred', \
 '' u 1:($14+$15) w l t'comm', '' u 1:(517.*(0.03+0.97/$1)) w l lt 9 t'Amdahl'

