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1. Compiling and Running NBODY6++

1.1 Copy and run the code on kepler

rsync -av ~spurzem/worknb6/ worknb6/
cd worknb6
module load cuda/5.0
module load openmpi-x86_64
make clean ; make mpich
ls -ltr

You should find the executable file nbody6.

mv nbody6 Run/

make clean ; make mpichgpu_kepler
ls -ltr

You should find the executable file nbody6.gpu

mv nbody6.gpu Run/

cd Run/
ls -lrt

Here  is  the  batch  job  script  gpu_script.sh  .  You  should  run  it  with
nbody6  for  nodes=1,2,4  (gres=gpu:0)  and  with  nbody6.gpu  for
nodes=1,2,4 (gres=gpu:1). Always use the student queue #SBATCH -p
Student_GPU . Larger jobs (e.g. with nodes 6,8) will only run in the
GPU queue (#SBATCH -p GPU) and may take long or very long waiting
time. Also set time=00:30:00 in the job script.



The standard input file in5000.comment should be used normally. You
can also try some of the other input files, e.g. in10k.ktg.sev . This will 
include  astrophysical  stellar  evolution  and  produce  data  for  a
Hertzsprung Russell diagram in sev.83.

1.2 Some more information

Usage of .F files: 

intgrt.F is pre-processed with C-Preprocessor; it evaluates so-called 
preprocessor directives in the source code; they start with # , for 
example:

#ifdef PARALLEL      
...
#endif

Preprocessor directives are selected with a compiler option: 
-D PARALLEL compiles code between #ifdef PARALLEL and #endif. 
Without -D PARALLEL these code lines will not be used! 
WARNING - never keep  .f if you have .F - the preprocessor directives 
will fail. 

2 Parallel Communication Schemes and 
Literature

NBODY6++ runs in the SPMD (Single Program Multiple Data) Scheme.
It means when you start the parallel NBODY6++ run on n cores (by
using the command (  mpirun -np n … ),  n identical  copies of the
program will start. In parallel sections these copies of the code share
their work and communicate data with each other through the MPI
functions in the code.

NBODY6++  uses  for  communication  a  copy  algorithm  (all  new
information is copied immediately to all nodes); other algorithms are
ring algorithm or (hyper)systolic algorithm, see Dorband, Hemsendorf,



Merritt,  2003 (Journ. Comp. Phys.); Makino (2002). If the number of
particles per node is large enough, all algorithms scale equally well.
The similar but simpler phiGRAPE and phiGPU codes by Berczik and
others  (see  e.g.  Harfst  et  al.  2007,  New Astronomy)  use  a  mixed
algorithm.

The  copy  algorithm  in  NBODY6++  is  implemented  manually  with
MPI_SENDRECV.  Current  modern implementations of  MPI_BCAST will
be equally efficient.

3 Hands-On Experiment on parallel computer 

3.1   Profiling for NBODY6/6++

The code measures the wall clock time used for many things:

total, regular force, irregular force, adjust, regularised, prediction, 
overhead for parallelisation, communication time...

Your task: Do some experiment - run on 1,2,4,... processors, with 
and without GPU usage, as explained above

Explanation of times in output (line below 'PE   N'):
ttot: total wallclock time 
treg: regint, regular force (PAR)
tirr: nbint, neighbour force (PAR)
tadj: energy check (PAR)
tinit: computing of initial model (PAR)
tpred, tprednb: prediction
tmov: overhead for data move
tsub,tsub2: communication time using MPI_SENDRECV
xtsub1,xtsub2: number of bytes transferred

(PAR) means these routines are parallelised (contain shared work and 
MPI function).



Plot results for ttot, treg, tirr and tsub+tsub2 as a function of number 
of nodes used (1,2,4). What is the maximum speedup we get, without 
GPU, with GPU? What is the prediction of Amdahl's law? Compare.
Normalize the speedup for all runs (with and without GPU) always to 
the one node run without GPU.

 
3.2 Example Solution for NBODY6++ Tasks:
Here are my time measurements 
(taken from output files out.....):

  PE  N       ttot            treg      tirr      tpredtot  tint      tinit      tks      ttcomm    tadj     tmov      tprednb    tsub     tsub2    xtsub1   xtsub2
   1   5000    517.01170    447.73     43.23      0.00    504.89      4.20      0.22      0.00      7.83      1.46      6.85      0.00      0.00  0.00000D+00  0.00000D+00
   2   5000    273.74747    226.19     24.01      0.00    266.98      2.28      0.23      0.00      4.38      3.94      6.86      0.69      1.16  2.35923D+09  3.00958D+09
   4   5000    154.28701    110.07     14.23      0.00    150.33      1.29      0.24      0.00      2.56      8.72      6.82      1.72      2.39  3.53682D+09  4.51333D+09
   6   5000    110.29107      74.53       9.87      0.00    107.22      0.98      0.22      0.00      1.99      8.29      6.70      2.15      1.89  3.92945D+09  5.01460D+09
  12  5000      85.25265      40.48       9.90      0.00      82.62      0.69      0.22      0.00      1.83    14.99      6.74      4.48      3.72  4.32197D+09  5.51592D+09

Calculate Amdahl's Law:

Let X be the part of my program (in terms of computing time) which can be 
parallelised. The sequential computing time Tseq is normalized to unity (1), and 
can be expressed as:

Tseq = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing, 
ultrafast communication):

Tpar = X/p + (1-X)                         with number of processes (number of GPUs)   p

Then the speed-up of the program S = Tseq / Tpar :

S = 1 / (1-X+X/p)

Note the limit if p is very large:  S = 1/(1-X). We find from our measurements with 
NBODY6++ given above: X = (treg + tirr + tinit + tadj ) / ttot = 503 / 517 = 0.97 .
Hence S = 1/(0.03 + 0.97/p), for large p max speed-up:  S = 1/0.03 = 33.3333
(Note: this is only for 5000 Particles - for larger N we get MUCH higher X...)

Use gnuplot:

set logscale y
plot 'time' u 1:3 w l t'tot', '' u 1:4 w l t 'reg', '' u 1:5 w l t'irr', '' u 1:13 w l t'pred', \
                           '' u 1:($14+$15) w l t'comm', '' u 1:(517.*(0.03+0.97/$1)) w l lt 9 t'Amdahl'




