
Rainer Spurzem

Parallel Computing with NBODY6++
with and without GPU

Friday, Aug. 3, 2017, Uni Heidelberg, GPU Block Course

1. Compiling and Running NBODY6++

1.1 Compiling and running the code on kepler

cd worknb6
module unload cuda
module load cuda/5.0
make clean ; make mpich
ls ­ltr

You find the executable file nbody6, move it to Run/nbody6.gpu :

mv nbody6 Run/nbody6.mpi

make clean ; make mpichgpu_kepler
ls ­ltr

You should find the executable file nbody6.gpu

mv nbody6.gpu Run/

cd Run/
ls ­lrt

Here is the batch job script gpu_script.sh . You should run it with
nbody6 for nodes=1,2,4,6 (gres=gpu:0) and with nbody6.gpu for
nodes=1,2,4,6 (gres=gpu:1). Always use the student queue #SBATCH
-p Student_GPU . Larger jobs (e.g. more than 6 nodes) will only run in
the GPU queue (#SBATCH -p GPU) and may take long or very long
waiting time. Also set time=00:30:00 in the job script.

Furthermore you have to select In the job script (mpirun command)
whether to use nbody6.mpi or nbody6.gpu and also what is the name
of an input and output file, see below.

The job script uses input files like in5000.comment to read certain
parameters. We only care about the parameters N (initial paricle
number) and TCRIT (termination time in N-body units). Please make
sure that we have N and TCRIT set to 5000 and 5.0, respectively. The
files in5000.comment, in10k.comment and in32k.comment are used
for N=5000, 10000, 32000. For the course exercise you may use
either in5000.comment (for N=5000) or in10k.comment (here
N=10000), you have the free choice.

The files like in10k.ktg.sev switch on stellar evolution. This will include
astrophysical stellar evolution and produce data for a Hertzsprung
Russell diagram in sev.83. This is an optional experiment, not required
for the course.

The code produces a lot of different output files. Most of them are not
interesting for us. We will look mainly at the output listing such as e.g.
out5000... With

grep ADJUST out5000 (or whatever name you chose for out...)

you can see whether the run has done well. To extract the timing data
relevant for the course exercise, find the lines below ADJUST, headed
by “PE N ttot...” . Also interesting: the stellar evolution output file
sev.83 (if switched on) – you get in it lines with following columns:

time, index, name, stellar type, pos. in cluster, mass, log luminosity,
log radius, log effective temperature (last three in solar units).

1.2 Some more information

Usage of .F files:

intgrt.F is pre-processed with C-Preprocessor; it evaluates so-called
preprocessor directives in the source code; they start with # , for
example:

#ifdef PARALLEL
...
#endif

Preprocessor directives are selected with a compiler option:
-D PARALLEL compiles code between #ifdef PARALLEL and #endif.
Without -D PARALLEL these code lines will not be used!
WARNING - never keep .f if you have .F - the preprocessor directives
will fail.

2 Parallel Communication Schemes and
Literature

NBODY6++ runs in the SPMD (Single Program Multiple Data) Scheme.
It means when you start the parallel NBODY6++ run on n cores (by
using the command (mpirun ­np n …), n identical copies of the
program will start. In parallel sections these copies of the code share
their work and communicate data with each other through the MPI
functions in the code.

NBODY6++ uses for communication a copy algorithm (all new
information is copied immediately to all nodes); other algorithms are
ring algorithm or (hyper)systolic algorithm, see Dorband, Hemsendorf,
Merritt, 2003 (Journ. Comp. Phys.); Makino (2002). If the number of
particles per node is large enough, all algorithms scale equally well.
The similar but simpler phiGRAPE and phiGPU codes by Berczik and
others (see e.g. Harfst et al. 2007, New Astronomy) use a mixed
algorithm.

The copy algorithm in NBODY6++ is implemented manually with
MPI_SENDRECV. Current modern implementations of MPI_BCAST will
be equally efficient.

3 Hands-On Experiment on parallel computer

3.1 Profiling for NBODY6/6++

The code measures the wall clock time used for many things:

total, regular force, irregular force, adjust, regularised, prediction,
overhead for parallelisation, communication time...

Your task: Do some experiment - run on 1,2,4,6... processors, with
and without GPU usage, as explained above. Find, cut and paste the
lines below the timing header (“PE N ttot..”). Use the last one in your
job (after ADJUST TIME= 5.00).

Explanation of times in output (line below 'PE N'):
ttot: total wallclock time
treg: regint, regular force (PAR)
tirr: nbint, neighbour force (PAR)
tadj: energy check (PAR)
tinit: computing of initial model (PAR)
tsub,tsub2: communication time using MPI_SENDRECV
xtsub1,xtsub2: number of bytes transferred

(PAR) means these routines are parallelised (contain shared work and
MPI functions); there are more times listed, but we do not need them
here. treg, tirr, tinit and tadj are required to determine X (see below);
ttot, treg, tirr and tsub+tsub2 should be plotted as a function of
number of nodes used (1,2,4,6), both for MPI and GPU jobs. What is
the maximum speedup we get, without GPU, with GPU? What is the
prediction of Amdahl's law? Note that the speed-up should be
measured relative to the single node non-GPU case; you may try (for
the GPU case) to use the single node GPU run as a basis for speedup
computation, but remember that the GPU is already a parallel
computing device (with p ~ 2500!), so using a single node with GPU is
not really a sequential run.

3.2 Example Solution for NBODY6++ Tasks:
Here are my time measurements
(taken from output files out.....):

 PE N ttot treg tirr tpredtot tint tinit tks ttcomm tadj tmov tprednb tsub tsub2 xtsub1 xtsub2
 1 5000 517.01170 447.73 43.23 0.00 504.89 4.20 0.22 0.00 7.83 1.46 6.85 0.00 0.00 0.00000D+00 0.00000D+00
 2 5000 273.74747 226.19 24.01 0.00 266.98 2.28 0.23 0.00 4.38 3.94 6.86 0.69 1.16 2.35923D+09 3.00958D+09
 4 5000 154.28701 110.07 14.23 0.00 150.33 1.29 0.24 0.00 2.56 8.72 6.82 1.72 2.39 3.53682D+09 4.51333D+09
 6 5000 110.29107 74.53 9.87 0.00 107.22 0.98 0.22 0.00 1.99 8.29 6.70 2.15 1.89 3.92945D+09 5.01460D+09

Calculate Amdahl's Law:

Let X be the part of my program (in terms of computing time) which can be
parallelised. The sequential computing time Tseq is normalized to unity (1), and
can be expressed as:

Tseq = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing,
ultrafast communication):

Tpar = X/p + (1-X) with number of processes (number of GPUs) p

Then the speed-up of the program S = Tseq / Tpar :

S = 1 / (1-X+X/p)

Note the limit if p is very large: S = 1/(1-X). We find from our measurements with
NBODY6++ given above: X = (treg + tirr + tinit + tadj) / ttot = 503 / 517 = 0.97 .
Hence S = 1/(0.03 + 0.97/p), for large p max speed-up: S = 1/0.03 = 33.3333
(Note: this is only for 5000 Particles - for larger N we get MUCH higher X...) So, if
we know X and p we can compute a predicted speedup S, and with that predict a
parallel computing time by using
Tpar,p = Tseq/S
The times Tpar,p are used to make the plotted line for Amdahl's law below..

Use gnuplot:

set logscale y
plot 'time' u 1:3 w l t'tot', '' u 1:6 w l t 'reg', '' u 1:7 w l t'irr', \
 '' u 1:($13+$14) w l t'comm', '' u 1:(517.*(0.03+0.97/$1)) w l lt 9 t'Amdahl'

See an example result below. Your results may deviate, look less nice, this is
usually due to the high load of the kepler computer during the course. If you have
successfully finished the 8 runs and collected your data, no matter whether they
look good or bad, it is ok to pass the course.

Summary of your tasks to pass the course; please turn in the following
results to spurzem@ari.uni-heidelberg.de (no deadline given)

1.) Two plots showing the times ttot, treg, tirr and tsub+tsub2
(communication time) as a function of p – one for MPI, one for GPU
jobs. Plot also the predicted times obtained from Amdahl's law.
2.) A data file containing the data you have used for 1; or a notice
where I can find the file on kepler. A notice where I can find the output
file of all your 8 runs.
3.) A few (one, two, three...) sentences for interpretation: How good is
Amdahl's law working? How good works GPU acceleration? Did you get
outliers / bad results which do not match expectations? Anything else
you like to mention. And please also questions if there are.

mailto:spurzem@ari.uni-heidelberg.de

