User guide for the Kepler cluster of the
ARI

Fabian Klein
24th July 2016

1 Kepler cluster

1.1 Configuration

1.2 Kepler Hardware

Each Kepler node is equipped with two 8 core Intel Xenon E5-2650 processors. One
of them is assigned to the CPU queue, while the other one is assigned to the GPU
queue. Hence, there are 8 threads available for the CPU queue(8 devices) and 8 more
for the GPU queue(1 device). Hence, you can use e.g. 8 OpenMp threads atop on one
MPIT thread using 1 GPU. The GPU is one K20M(rev al) per node.

1.3 Organisation of diskspace

There are two general parts of the diskarray. The “home” and the “work” part. “home”
is backed up, whereas “work” is not. Usually, you will get space on home and a more
bulky folder on “work” on request.

1.4 Usage
1.4.1 Queueing system

Most important commands:

sbatch scriptname | Submit scriptname script
scancel jobID Cancel job jobID(Must be your own job) Two scripts
squeue Display current state of queues(called partitions)

for use with “sbatch” have been supplied to you already. Here are some more details
on their contents and the commands.

Command Effect Comments

#!/bin/bash Makes it a valid bash script

#SBATCH -J <jobname> Sets the job’s name

#SBATCH -p <partition> Chooses partition(often also called “queue”) Choices CPU/GPU
#SBATCH --nodes=N Number of nodes 12<N<1
#SBATCH --gres=gpu:1 Request one GPU per Node Only in GPU queue!
#SBATCH --ntasks-per-node=n Number of tasks per node 8<n<l1

#SBATCH --cpus-per-task=m Number of threads per task(OpenMP) mn < 8

#SBATCH --time=xx:yy:zz Desired runtime(Killed afterwards) <72:00:00

%J Access for jobnumber

#SBATCH --output=outname.%J.out Redirect Stdout to filename

#SBATCH --error=errorname.%J.err Redirect Stderror to filename
Remember to load any modules that you might need and do any exports after this
part of script! See the loading of cuda 5.0 in the GPU script and the export of the
OpenM as also shown here. For details on modules see [1.5

module load cuda/5.0

if [-n "$SLURM_CPUS_PER_TASK"]; then
omp_threads=$SLURM_CPUS_PER_TASK
else
omp_threads=1
fi
export OMP_NUM_THREADS=$omp_threads

If -—cpus-per-task is not defined it defaults to 1 in this setup. After that you can
start your program with mpirun -np M ./Yourprogram, where M = nN. For your
convenience the example scripts calculates that for you via.

mpiprocs=$(($SLURM_NTASKS_PER_NODE * $SLURM_NNODES))

mpirun -np $mpiprocs ./yourprogram

1.5 Module system

The Kepler cluster now contains a module system in order to make different com-
pilers, programs and e.g. CUDA available to users. The following commands are most
important for the module package.

e module avail List available modules you can currently load

e module load <modulename> Load module specified by modulename
e module list List currently loaded modules

e module unload <modulename> Unload specified module

e module switch <current loaded module> <switchable module> Switch a cur-
rently loaded module with a module eligible to be switched with it

The load, unload and switch allow you to use the tab completion. Be aware that
their are dependencies and excluding relations betwen modules. You should either
check module avail or use tab completion. If you always need certain modules loaded
please add the command add the end of your .bashrc.

1.6 Using (different versions of) CUDA

On the Kepler cluster there is a choice of CUDA versions for you to use. This tutorial
will show you how to make usw of the different versions.

1.6.1 Currently available CUDA versions

All CUDA versions are located in /opt/local. As of now (05.02.2016) the CUDA
versions displayed in table[l|are installed on Kepler. If you need a version not installed
on the cluster please notify the admins.

CUDA Version exact location
4.2 /opt/local /cudad?2
5.0 /opt/local/cuda50
7.0 /opt/local/cuda-7.0

Table 1: Table displaying currently installed CUDA Versions

1.6.2 Switching between versions

CUDA is managed by a module system on the Kepler cluster. You can use any of the
three choices:

e module load cuda/4.2
e module load cuda/5.0
e module load cuda/7.0

in order to load the desired version of CUDA into your path/library path variable.
You can switch between version by using the module switch command as explained
in subsection You need to edit your makefiles and library addtions such that is
matches the CUDA paths.

2 Getting your own python using pyenv

3 Installation of pyenv

3.1 Installation and updates

This is mainly extracted from https://github.com/yyuu/pyenv.

Initially you need to pull the git repository of pyenv into /.pyenv. You do this by:
git clone https://github.com/yyuu/pyenv.git ~/.pyenv

Git then proceeds to download the current version from gitHub. You then need to add
some things to your /.bashrc by:

echo ’export PYENV_ROOT="$HOME/.pyenv"’ >> ~/.bashrc
echo ’export PATH="$PYENV_ROOT/bin:$PATH"’> >> ~/.bashrc
echo ’eval "$(pyenv init -)"’ >> ~/.bashrc

Then you need to get the new variables into the shell. The savest way to do so is to
log out and log in again.

If you want to update to a newer version of pyenv at some point you just execute the
commands

cd ~/.pyenv
git pull

3.2 Usage

If everything worked correctly you can now use pyenv anywhere in your folders.
pyenv commands lists all commands of pyenv. For a detailed description see https:
//github.com/yyuu/pyenv/blob/master/COMMANDS.md. The most important ones
are listed below.

pyenv install —list Lists all possible versions of python which can be installed
pyenv install version Installs python version. E.g. pyenv install 2.7.6.
pyenv rehash Execute this after every installation to be save
pyenv uninstall version
pyenv local version Sets local python version (folder and below) to version
pyenv global version Set global python version

Hint: pip already comes with python for python >= 2.6.6. For older versions you
have to build it first (not documented here). You can now install new python packages
to the currently used python distribution by

pip install <packageName>

https://github.com/yyuu/pyenv
https://github.com/yyuu/pyenv/blob/master/COMMANDS.md
https://github.com/yyuu/pyenv/blob/master/COMMANDS.md

If you want to upgrade a package use pip install --upgrade SomePackage. Search-
ing for packages:

pip search package name

See http://www.pythonforbeginners.com/basics/how-to-use-pip-and-pypi| for
a full list. It should be noted that some packages (e.g. scipy) need the installation
if certain system packages. Please notify an administrator that you need the certain
package and it will be installed if possible.

3.2.1 Manually change the python version used in a specific folder

http://www.pythonforbeginners.com/basics/how-to-use-pip-and-pypi

	Kepler cluster
	Configuration
	Kepler Hardware
	Organisation of diskspace
	Usage
	Queueing system

	Module system
	Using (different versions of) CUDA
	Currently available CUDA versions
	Switching between versions

	Getting your own python using pyenv
	Installation of pyenv
	Installation and updates
	Usage
	Manually change the python version used in a specific folder

