Computers and Applications

More About the Future

Computers and Applications

More About the Future

1. FPGA

(Field Programmable Gate Array)

lienhart@ti.uni-mannheim.de

Pressure force pipeline:

FPGA...

Reconfigurable Computing (FPGA) at ZITI, Heidelberg

Chair on Application Specific Computing

https://asc.ziti.uni-heidelberg.de/en/start

Our research focuses on significant increments of performance and accuracy in application specific computing through a global optimization across the entire spectrum of numerical methods, algorithm design, software implementation and hardware acceleration.

These layers typically have contradictory requirements and their integration poses many challenges. For example, numerically superior methods expose little parallelism, bandwidth efficient algorithms convolve the processing of space and time into unmanageable software patterns, high level language abstractions create data layout and composition barriers, and high performance on today's hardware poses strict requirements on parallel execution and data access. High performance and accuracy for the entire application can only be achieved by balancing these requirements across all layers.

The following topics are given particular attention:

- Mixed precision methods
- Multigrid methods
- Adaptive data structures
- Data representation
- Bandwidth optimization
- Reconfigurable computing

Heidelberg University
Department of Mathematics and Computer Science
Department of Physics and Astronomy
Institute of Computer Engineering (ZITI)
View PDF

Prof. Robert Strzodka (successor of retired Prof. Reinhard Männer)

Computers and Applications

More About the Future

2. Research Centers and Computing Centers

GPU Clusters used:

Heidelberg/Beijing (NAOC/CAS and Silk Road Project)

GPU servers wn14/hansolo/obiwan/... RTX 2080 Ti

JUWELS Booster (Nodes with 4x Ampere A100 GPU)

Golowood cluster, Main Astron. Observatory, Kiev, Ukraine

Jülich Supercomputing Center (JSC)

https://www.fz-juelich.de/ias/jsc/EN/Expertise/SimLab/simlab_node.html

https://www.exascaleproject.org/ BERKELEY LAB https://exascale.lbl.gov/

HOME

SOFTWARE

APPLICATIONS

CO-DESIGN

HARDWARE

LEADING THE WAY

EQSIM

EQSIM: High Performance, Multidisciplinary Simulations for Regional Scale Seismic Hazard and Risk Assessments EQSIM: High Performance, Multidisciplinary Simulations for Regional Scale Seismic Hazard and Risk Assessments is led by David McCallen...

Continue Reading

ExaBiome

ExaBiome: Exascale Solutions for Microbiome Analysis

ExaBiome: Exascale Solutions for Microbiome Analysis is led

by Associate Lab Director for Computing Sciences Kathy Yelick,

with support from Los Alamos National Laboratory and

DOE's....

Continue Reading

ExaStar

ExaStar: Exascale Models of Stellar Explosions: Quintessential Multi-Physics Simulation ExaStar: Exascale Models of Stellar Explosions: Quintessential Multi-Physics Simulation is led by Daniel Kasen of the Nuclear Science Division with support from...

Continue Reading

WarpX

WarpX: Exascale Modeling of Advanced Particle Accelerators

WarpX: Exascale Modeling of Advanced Particle Accelerators is

led by Jean-Luc Vay of the Accelerator Technology and Applied

Subsurface

Subsurface: An Exascale Subsurface Simulator of Coupled Flow,
Transport, Reactions and Mechanics Subsurface: An Exascale
Subsurface Simulator of Coupled Flow, Transport, Reactions

ľ

http://english.ipe.cas.cn/

Home | Contact | Sitemap | 中 March 04, 2021 Please input keywor Search 文 | CAS

Institute of Process Engineering, Chinese Academy of Sciences

Home

News

About Us

Research

People

International Cooperation

Graduate Education

Papers

Join Us

Events

 New System Improves Coking Wastewater Treatment Efficiency Based on the idea of whole-process pollution control, researchers led by Prof. CAO Hongbin from IPE, lowered the cost of coking wastewater treatment by 20 percent in their new system, and achieved stable and efficient removal of toxic and polluting particles.

China Focus: New Technology Enables Large-scale Production of Artemisinin for Malaria

Researchers from the Institute of Process Engineering (IPE) of Chinese Academy of Sciences have developed a new technology to produce artemisinin, a top malaria treatment, on a large scale.

Upcoming Events

photosynthesis 06-11

- Lecture: Rate Processes in Particle and Powder Technology 06-10
- Lecture: Three Approaches to choose an ionic solvent 05-19
- Lecture: Magnetic Resonance Imaging and Computational Modeling of Multiphase Granular Flows 05-19

Vacancies at Mesoscience Center

Chemical Engineering Science

Volume 198, 28 April 2019, Pages 198-223

Review

Multiscale structures in particle–fluid systems: Characterization, modeling, and simulation

DNS of gas-solid flow: >20x speedup (1C1060/1E5430 core)

120K Particles + 400M pseudo-particles

Computers and Applications

More About the Future

3. Supercomputing Systems

Fermi-based GPU supercomputer IPE

Rpeak SP: 2Pflops

Rpeak DP: 1Pflops

Linpack: 207.3T (Top500 19th)

Mflops/Watt: 431 (Green500 8th)

Total RAM: 17.2TB

Total VRAM: 6.6TB

Total HD: 360TB

Inst. Comm.: H3C GE

Data Comm.: Mellanox QDR IB

Occupied area

: 150 sq.m.

Weight: 12.6 tons

Max Power: 600kW(computing)

200kW(cooling)

System: CentOS 5.4, PBS

Monitor: Ganglia, GPU monitor

Languages: C, C++, CUDA 3.1, OpenCL

Mole-8.5(2010.04.24)

TOP500 #4: Wuxi, Jiangsu Prov., near Shanghai, China

SUNWAY TAIHULIGHT

- SW26010 processor (Chinese design, ISA, & fab)
- 1.45 GHz
- Node = 260 Cores (1 socket)
 - 4 core groups
 - 32 GB memory
- 40,960 nodes in the system
- 10,649,600 cores total
- 1.31 PB of primary memory (DDR3).
- 125.4 Pflop/s theoretical peak
- 93 Pflop/s HPL, 74% peak
- 15.3 Mwatts water cooled
- 3 of the 6 finalists for Gordon Bell Award@SC16

Chinese Processor Architecture 260 cores on socket.

FUGAKU

Nature's Secrets

富岳

Mt. Fuji

The world's fastest Super Computer 2020

Currently fastest supercomputer of the world: Fugaku @ RIKEN Center, Kobe, Japan 理

https://www.riken.jp/en/

https://www.r-ccs.riken.jp/en/fugaku/project/outline

Computers and Applications

More About the Future

4. On the Software (CUDA?)

NVIDIA EXPANDS SUPPORT FOR ARM

Deep Learning in Science

Cray XC40 system at NERSC

Modeling galaxy shapes

Clustering Daya Bay events

Decoding speech from ECoG

Classifying LHC events

Oxford Nanopore sequencing

Opportunities to apply DL widely in support of classic HPC simulation and modelling

Copyright 2017 Cray Inc.

SYSTEMS APPROACHES TO EXASCALE

More GPUs, Fewer CPUs:

Titan: 1GPU/CPU

Summit: 3 GPUs/CPU

Exascale: ?

Faster Serial Processing (MANY CORE):

Run 8x Fewer Cores @ 2x Speed

Denser Packaging:

Move Networking to Faster Local Networks: NVLINK

EXASCALE: "50X FASTER THAN TITAN"

Per-GPU -hardware- speedups will be less than 50x

	2013 Kepler	2016 Pascal	2017 Volta	2021*	Speedup
FP64 Tflop/s	1.5	4.5	7	7-21	5-15
Memory GB/s	288	720	900	900-4000	3-14
I/O BW GB/s	7	80	150	150-500	20-70
Deep Learning FP16Tflop	o/s 3	20	112	112-500	37-166
Deep Learning BW GB/s	576	2880	3600	3600-16000	6-27

*Extremely Fuzzy Public Projections for 2021

El Capitan Supercomputer Detailed: AMD CPUs & GPUs To Drive 2 Exaflops of Compute

by Ryan Smith on March 4, 2020 1:00 PM EST

Posted in CPUs AMD HPC GPUs Cray El Capitan

https://www.anandtech.com/show/15581/el-capitan-supercomputer-detailed-amd-cpus-gpus-2-exaflops

Software? See comments....

Back in August, the United States Department of Energy and Cray announced plans for a third United States exascale supercomputer, El Capitan. Scheduled to be installed in Lawrence Livermore National Laboratory (LLNL) in early 2023, the system is intended primarily (but not exclusively) for use by the National Nuclear Security Administration (NNSA), who uses supercomputers in their ongoing nuclear weapons modeling. At the time the system was announced, The DOE and LLNL confirmed that they would be buying a Shasta system from Cray (now part of HPE), however the announcement at the time didn't go into any detail about what hardware would actually be filling one of Cray's very flexible supercomputers.

Computers and Applications

More About the Future End of Presentation (now matmul etc.)

Important Note:

If you do some NBODY research in the future, please contact us (tutors or lecturer); do not use the course code for research it is outdated.

Remember for certificate of course:

- * Output files of small experiments on your lecture account (0_hello, 1_add, ..., 7-matmul, 8-histo)
- * Return two plots, one data file, and a few comments to your tutors Deadline agreement with tutors! (Group 1: Mar 29, 2,3: Mar 19)
- * Notice: Student Queues will close Sunday, Mar 7, 23:59.
 You can run later, but contact me please spurzem@ari.uni-heidelberg.de

<u>Additional deeper material:</u>

Lectures by Prof. Wen-Mei Hwu Chicago in Berkeley 2012 and Beijing 2013, see http://iccs.lbl.gov/workshops/tutorials.html (down on page links to all lecture files, also available on request from spurzem@nao.cas.cn)

Lecture1: Computational thinking

Lecture2: Parallelism Scalability

Lecture3: Blocking Tiling

Lecture4: Coarsening Tiling

Lecture5: Data Optimization

Lecture6: Input Binning

Lecture7: Input Compaction

Lecture8: Privatization

See also:

http://freevideolectures.com/Course/2880/Advanced-algorithmic-techniques-for-GPUs/1

Massive Parallelism - Regularity

©Wen-mei W. Hwu and David KIR/NVIDIA, Berkeley, January 24-25, 2011

Main Hurdles to Overcome

- Serialization due to conflicting use of critical resources
- Over subscription of Global Memory bandwidth

Computational Thinking Skills

- The ability to translate/formulate domain problems into computational models that can be solved efficiently by available computing resources
 - Understanding the relationship between the domain problem and the computational models
 - Understanding the strength and limitations of the computing devices
 - Defining problems and models to enable efficient computational solutions

DATA ACCESS CONFLICTS

Conflicting Data Accesses Cause Serialization and Delays

 Massively parallel execution cannot afford serialization

 Contentions in accessing critical data causes serialization

A Simple Example

- A naïve inner product algorithm of two vectors of one million elements each
 - All multiplications can be done in time unit (parallel)
 - Additions to a single accumulator in one million time units (serial)

Berkeley, January 24-25, 2011

23

How much can conflicts hurt?

- Amdahl's Law
 - If fraction X of a computation is serialized, the speedup can not be more than 1/(1-X)
- In the previous example, X = 50%
 - Half the calculations are serialized
 - No more than 2X speedup, no matter how many computing cores are used

GLOBAL MEMORY BANDWIDTH

Global Memory Bandwidth

Ideal

Reality

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

Global Memory Bandwidth

- Many-core processors have limited off-chip memory access bandwidth compared to peak compute throughput
- Fermi
 - 1 TFLOPS SPFP peak throughput
 - 0.5 TFLOPS DPFP peak throughput
 - 144 GB/s peak off-chip memory access bandwidth
 - 36 G SPFP operands per second
 - 18 G DPFP operands per second
- To achieve peak throughput, a program must perform 1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations for each operand value fetched from off-chip memory 27

Berkeley, January 24-25, 2011

LOAD BALANCE

Load Balance

 The total amount of time to complete a parallel job is limited by the thread that takes the longest to finish

How bad can it be?

- Assume that a job takes 100 units of time for one person to finish
 - If we break up the job into 10 parts of 10 units each and have fo10 people to do it in parallel, we can get a 10X speedup
 - If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 units, the same 10 people will take 50 units to finish, with 9 of them idling for most of the time. We will get no more than 2X speedup.

How does imbalance come about?

- Non-uniform data distributions
 - Highly concentrated spatial data areas
 - Astronomy, medical imaging, computer vision, rendering, ...
- If each thread processes the input data of a given spatial volume unit, some will do a lot more work than others

Eight Algorithmic Techniques (so far)

Technique	Contention	Bandwidth	Locality	Efficiency	Load Imbalance	CPU Leveraging
Tiling		X	X			
Privatization	X		X			
Regularization				X	X	X
Compaction		X				
Binning		X	X	X		X
Data Layout Transformation	X		X			
Thread Coarsening	X	X	X	X		
Scatter to Gather Conversion	X					

http://courses.engr.illinois.edu/ece598/hk/

You can do it.

- Computational thinking is not as hard as you may think it is.
 - Most techniques have been explained, if at all, at the level of computer experts.
 - The purpose of the course is to make them accessible to domain scientists and engineers.

ANY MORE QUESTIONS?