ATOMICS

Therefore, if our threads get scheduled unfavorably, we end up computing the
wrong result. There are many other orderings for these six operations, some

of which produce correct results and some of which do not. When moving from
a single-threaded to a multithreaded version of this application, we suddenly
have potential for unpredictable results if multiple threads need to read or write
shared values.

In the previous example, we need a way to perform the read-modify-write without
being interrupted by another thread. Or more specifically, no other thread can
read or write the value of x until we have completed our operation. Because

the execution of these operations cannot be broken into smaller parts by other
threads, we call operations that satisfy this constraint as atomic. CUDA C
supports several atomic operations that allow you to operate safely on memory,
even when thousands of threads are potentially competing for access.

Now we’ll take a look at an example that requires the use of atomic operations to
compute correct results.

Computing Histograms

Oftentimes, algorithms require the computation of a histogram of some set of
data. If you haven't had any experience with histograms in the past, that’s not

a big deal. Essentially, given a data set that consists of some set of elements, a
histogram represents a count of the frequency of each element. For example, if
we created a histogram of the letters in the phrase Programming with CUDA C, we
would end up with the result shown in Figure 9.1.

Although simple to describe and understand, computing histograms of data
arises surprisingly often in computer science. It's used in algorithms for image
processing, data compression, computer vision, machine learning, audio
encoding, and many others. We will use histogram computation as the algorithm
for the following code examples.

A/IC|ID GIH/ I M N|O|P|R|T|U|W

Letter frequency histogram built from the string Programming with
CUDAC

170

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

Because the computation of a histogram may not be familiar to all readers, we’ll
start with an example of how to compute a histogram on the CPU. This example
will also serve to illustrate how computing a histogram is relatively simple in a
single-threaded CPU application. The application will be given some large stream
of data. In an actual application, the data might signify anything from pixel colors
to audio samples, but in our sample application, it will be a stream of randomly
generated bytes. We can create this random stream of bytes using a utility func-
tion we have provided called big random block (). In our application, we
create 100MB of random data.

", ./common/book.h"

SIZE (100*1024*1024)

main () |

*buffer = (*)big random block(SIZE) ;

Since each random 8-bit byte can be any of 256 different values (from 0x00 to
0xFF), our histogram needs to contain 256 bins in order to keep track of the
number of times each value has been seen in the data. We create a 256-bin array
and initialize all the bin counts to zero.

histo[256];
(i=0; 1<256; i++)

histol[i] = 0;

Once our histogram has been created and all the bins are initialized to zero,

we need to tabulate the frequency with which each value appears in the data
contained inbuffer []. The idea here is that whenever we see some value z in
the array buffer []1, we want to increment the value in bin z of our histogram.
This way, we're counting the number of times we have seen an occurrence of the
value z.

171

Download from www.wowebook.com

ATOMICS

If buf fer [1i] is the current value we are looking at, we want to increment the
count we have in the bin numbered buffer [i]. Since binbuffer[i] is located
athisto[buffer[i]], we canincrement the appropriate counterin a single
line of code.

histo[buffer[i]]++;

We do this for each element in buffer [] with a simple for () loop:

(i=0; 1<SIZE; i++)
histo[buffer[i]]++;

At this point, we've completed our histogram of the input data. In a full applica-
tion, this histogram might be the input to the next step of computation. In our
simple example, however, this is all we care to compute, so we end the applica-
tion by verifying that all the bins of our histogram sum to the expected value.

histoCount = 0;
(i=0; i<256; i++) {
histoCount += histol[i];

}

printf ("Histogram Sum: %1d\n", histoCount) ;

If you've followed closely, you will realize that this sum will always be the same,
regardless of the random input array. Each bin counts the number of times we
have seen the corresponding data element, so the sum of all of these bins should
be the total number of data elements we’ve examined. In our case, this will be the
value SIZE.

And needless to say (but we will anyway), we clean up after ourselves and return.

free(buffer);

0;

172

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

On our benchmark machine, a Core 2 Duo, the histogram of this 100MB array of
data can be constructed in 0 .416 seconds. This will provide a baseline perfor-
mance for the GPU version we intend to write.

We would like to adapt the histogram computation example to run on the GPU.

If our input array is large enough, it might save a considerable amount of time

to have different threads examining different parts of the buffer. Having different
threads read different parts of the input should be easy enough. After all, it's very
similar to things we have seen so far. The problem with computing a histogram
from the input data arises from the fact that multiple threads may want to incre-
ment the same bin of the output histogram at the same time. In this situation, we
will need to use atomic increments to avoid a situation like the one described in
Section 9.2: Atomic Operations Overview.

Ourmain () routine looks very similar to the CPU version, although we will need
to add some of the CUDA C plumbing in order to get input to the GPU and results
from the GPU. However, we start exactly as we did on the CPU:

main () {

*puffer = (*)big random block(SIZE) ;

We will be interested in measuring how our code performs, so we initialize events
for timing exactly like we always have.

cudaEvent t start, stop;
HANDLE ERROR(cudaEventCreate(&start));
HANDLE ERROR(cudaEventCreate(&stop));

HANDLE ERROR(cudaEventRecord(start, 0));

After setting up our input data and events, we look to GPU memory. We
will need to allocate space for our random input data and our output histo-
gram. After allocating the input buffer, we copy the array we generated with

173

Download from www.wowebook.com

174

big random block () tothe GPU. Likewise, after allocating the histogram, we
initialize it to zero just like we did in the CPU version.

// allocate memory on the GPU for the file's data
*dev_buffer;
*dev_histo;
HANDLE ERROR(cudaMalloc ((*%) &dev_buffer, SIZE));
HANDLE ERROR(cudaMemcpy (dev_buffer, buffer, SIZE,

cudaMemcpyHostToDevice)) ;

HANDLE_ ERROR (cudaMalloc((**) &dev_histo,

256 * ()))
HANDLE ERROR(cudaMemset (dev_histo, 0,

256 * ()))

You may notice that we slipped in a new CUDA runtime function, cudaMemset ().
This function has a similar signature to the standard C function memset (), and
the two functions behave nearly identically. The difference in signature is between
these functions is that cudaMemset () returns an error code while the C library
function memset () does not. This error code will inform the caller whether
anything bad happened while attempting to set GPU memory. Aside from the
error code return, the only difference is that cudaMemset () operates on GPU
memory while memset () operates on host memory.

After initializing the input and output buffers, we are ready to compute our histo-
gram. You will see how we prepare and launch the histogram kernel momentarily.
For the time being, assume that we have computed the histogram on the GPU.
After finishing, we need to copy the histogram back to the CPU, so we allocate a
256-entry array and perform a copy from device to host.

histo[256];
HANDLE ERROR(cudaMemcpy (histo, dev_histo,
256 * ()

cudaMemcpyDeviceToHost)) ;

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

At this point, we are done with the histogram computation so we can stop our
timers and display the elapsed time. Just like the previous event code, this is
identical to the timing code we've used for several chapters.

// get stop time, and display the timing results
HANDLE ERROR(cudaEventRecord(stop, 0));
HANDLE ERROR(cudaEventSynchronize(stop));
elapsedTime;
HANDLE ERROR(cudaEventElapsedTime(&elapsedTime,
start, stop));

printf ("Time to generate: %3.1f ms\n", elapsedTime) ;

At this point, we could pass the histogram as input to another stage in the algo-
rithm, but since we are not using the histogram for anything else, we will simply
verify that the computed GPU histogram matches what we get on the CPU. First,
we verify that the histogram sum matches what we expect. This is identical to the
CPU code shown here:

histoCount = 0;
(i=0; 1<256; i++) {
histoCount += histol[il];

}

printf ("Histogram Sum: %$1d\n", histoCount) ;

To fully verify the GPU histogram, though, we will use the CPU to compute the
same histogram. The obvious way to do this would be to allocate a new histogram
array, compute a histogram from the input using the code from Section 9.3.1:
CPU Histogram Computation, and, finally, ensure that each bin in the GPU and
CPU version match. But rather than allocate a new histogram array, we’ll opt to
start with the GPU histogram and compute the CPU histogram “in reverse.”

By computing the histogram “in reverse,” we mean that rather than starting

at zero and incrementing bin values when we see data elements, we will start
with the GPU histogram and decrement the bin’s value when the CPU sees data
elements. Therefore, the CPU has computed the same histogram as the GPU if
and only if every bin has the value zero when we are finished. In some sense, we
are computing the difference between these two histograms. The code will look

175

Download from www.wowebook.com

176

remarkably like the CPU histogram computation but with a decrement operator
instead of an increment operator.

// verify that we have the same counts via CPU
(i=0; 1<SIZE; 1i++)
histo[buffer[i]]--;
(i=0; 1i<256; i++) {
(histo[i] != 0)

printf ("Failure at %d!\n", i);

As usual, the finale involves cleaning up our allocated CUDA events, GPU
memory, and host memory.

HANDLE ERROR(cudaEventDestroy(start));
HANDLE ERROR (cudaEventDestroy(stop));
cudaFree(dev_histo);
cudaFree (dev _buffer);
free(buffer);

0;

Before, we assumed that we had launched a kernel that computed our histogram
and then pressed on to discuss the aftermath. Our kernel launch is slightly more
complicated than usual because of performance concerns. Because the histo-
gram contains 256 bins, using 256 threads per block proves convenient as well as
results in high performance. But we have a lot of flexibility in terms of the number
of blocks we launch. For example, with 100MB of data, we have 104,857,600 bytes
of data. We could launch a single block and have each thread examine 409,600
data elements. Likewise, we could launch 409,600 blocks and have each thread
examine a single data element.

As you might have guessed, the optimal solution is at a point between these two
extremes. By running some performance experiments, optimal performance is
achieved when the number of blocks we launch is exactly twice the number of
multiprocessors our GPU contains. For example, a GeForce GTX 280 has 30 multi-
processors, so our histogram kernel happens to run fastest on a GeForce GTX 280
when launched with 60 parallel blocks.

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

In Chapter 3, we discussed a method for querying various properties of the
hardware on which our program is running. We will need to use one of these
device properties if we intend to dynamically size our launch based on our current
hardware platform. To accomplish this, we will use the following code segment.
Although you haven't yet seen the kernel implementation, you should still be able

to follow what is going on.

cudaDeviceProp prop;

blocks =

HANDLE ERROR(cudaGetDeviceProperties(&prop, 0));
prop.multiProcessorCount;

histo kernel<<<blocks*2,256>>>(dev _buffer, SIZE, dev_histo);

Since our walk-through of main () has been somewhat fragmented, here is the

entire routine from start to finish:

main(void) {

*buffer =
start,

cudaEvent t

*dev_buffer;

*dev_histo;

HANDLE_ERROR (cudaMalloc (
HANDLE ERROR (cudaMemcpy (
HANDLE ERROR (cudaMalloc (
HANDLE ERROR(cudaMemset (

stop;
HANDLE ERROR(cudaEventCreate(&start));
HANDLE ERROR(cudaEventCreate(&stop));
HANDLE ERROR(cudaEventRecord(start, 0));

// allocate memory on the GPU for the file's data

(

dev_buffer, buffer,

cudaMemcpyHostToDevice));

(
256 *

dev_histo, 0,

256 *

**) &dev_buffer,

**) &dev_histo,

*)big random block(SIZE);

SIZE));
SIZE,

()))

()))

177

Download from www.wowebook.com

ATOMICS

cudaDeviceProp prop;
HANDLE ERROR(cudaGetDeviceProperties(&prop, 0));
int blocks = prop.multiProcessorCount;

histo kernel<<<blocks*2,256>>>(dev buffer, SIZE, dev histo);

unsigned int histo[256];
HANDLE ERROR(cudaMemcpy (histo, dev_histo,
256 * gizeof (int),

cudaMemcpyDeviceToHost)) ;

// get stop time, and display the timing results

HANDLE ERROR(cudaEventRecord(stop, 0));

HANDLE ERROR(cudaEventSynchronize(stop));

float elapsedTime;

HANDLE ERROR (cudaEventElapsedTime(&elapsedTime,
start, stop));

printf ("Time to generate: %3.1f ms\n", elapsedTime) ;

long histoCount = 0;
for (int 1i=0; i<256; i++) {
histoCount += histol[i];

}

printf ("Histogram Sum: %$1d\n", histoCount) ;

// verify that we have the same counts via CPU
for (int 1=0; 1<SIZE; i++)

histo[buffer[i]]--;
for (int i=0; 1<256; i++) {

if (histol[i]l != 0)

printf ("Failure at %d!\n", i);

HANDLE ERROR (cudaEventDestroy(start));
HANDLE ERROR(cudaEventDestroy(stop));

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

cudaFree(dev_histo);
cudaFree (dev _buffer);
free(buffer);

0;

And now for the fun part: the GPU code that computes the histogram! The kernel
that computes the histogram itself needs to be given a pointer to the input

data array, the length of the input array, and a pointer to the output histogram.
The first thing our kernel needs to compute is a linearized offset into the input
data array. Each thread will start with an offset between 0 and the number of
threads minus 1. It will then stride by the total number of threads that have been
launched. We hope you remember this technique; we used the same logic to add
vectors of arbitrary length when you first learned about threads.

", . /common/book.h"

SIZE (100*1024*1024)

histo kernel (*buffer,
size,
*histo)
1 = threadIdx.x + blockIdx.x * blockDim.x;

stride = blockDim.x * gridDim.x;

Once each thread knows its starting offset 1 and the stride it should use, the code
walks through the input array incrementing the corresponding histogram bin.

(i < size) {
atomicAdd(& (histo[buffer[il]l), 1);

i += stride;

179

Download from www.wowebook.com

ATOMICS

The highlighted line represents the way we use atomic operations in CUDA C.
The callatomicAdd (addr, y) ; generates an atomic sequence of opera-
tions that read the value at address addr, adds y to that value, and stores the
result back to the memory address addr. The hardware guarantees us that no
other thread can read or write the value at address addr while we perform these
operations, thus ensuring predictable results. In our example, the address in
question is the location of the histogram bin that corresponds to the current byte.
If the current byte isbuffer [i], just like we saw in the CPU version, the corre-
sponding histogram bin is histo [buffer [i]]. The atomic operation needs the
address of this bin, so the first argument is therefore & (histo [buffer[i]]).
Since we simply want to increment the value in that bin by one, the second argu-
mentis 1.

So after all that hullabaloo, our GPU histogram computation is fairly similar to
the corresponding CPU version.

", ./common/book.h"

SIZE (100*1024*1024)

histo kernel (*pbuffer,
size,
*histo) {
i = threadIdx.x + blockIdx.x * blockDim.x;
stride = blockDim.x * gridDim.x;
(i < size) {
atomicAdd(& (histo[buffer([i]l), 1);

1 += stride;

However, we need to save the celebrations for later. After running this example,
we discover that a GeForce GTX 285 can construct a histogram from 100MB of
input data in 1.752 seconds. If you read the section on CPU-based histograms,
you will realize that this performance is terrible. In fact, this is more than four
times slower than the CPU version! But this is why we always measure our
baseline performance. It would be a shame to settle for such a low-performance
implementation simply because it runs on the GPU.

180

Download from www.wowebook.com

9.4 COMP TINGH ISTOGRAMS

Since we do very little work in the kernel, it is quite likely that the atomic opera-
tion on global memory is causing the problem. Essentially, when thousands

of threads are trying to access a handful of memory locations, a great deal of
contention for our 256 histogram bins can occur. To ensure atomicity of the incre-
ment operations, the hardware needs to serialize operations to the same memory
location. This can result in a long queue of pending operations, and any perfor-
mance gain we might have had will vanish. We will need to improve the algorithm
itself in order to recover this performance.

Ironically, despite that the atomic operations cause this performance degrada-
tion, alleviating the slowdown actually involves using more atomics, not fewer.
The core problem was not the use of atomics so much as the fact that thousands
of threads were competing for access to a relatively small number of memory
addresses. To address this issue, we will split our histogram computation into two
phases.

In phase one, each parallel block will compute a separate histogram of the data
that its constituent threads examine. Since each block does this independently,
we can compute these histograms in shared memory, saving us the time of
sending each write-off chip to DRAM. Doing this does not free us from needing
atomic operations, though, since multiple threads within the block can still
examine data elements with the same value. However, the fact that only 256
threads will now be competing for 256 addresses will reduce contention from the
global version where thousands of threads were competing.

The first phase then involves allocating and zeroing a shared memory buffer
to hold each block’s intermediate histogram. Recall from Chapter 5 that since
the subsequent step will involve reading and modifying this buffer, we need a
__syncthreads () call to ensure that every thread’s write has completed
before progressing.

histo kernel (*buffer,
size,

*histo) {

temp [256] ;
temp [threadIdx.x] = 0;

__syncthreads () ;

181

Download from www.wowebook.com

ATOMICS

After zeroing the histogram, the next step is remarkably similar to our original
GPU histogram. The sole differences here are that we use the shared memory
buffer temp [] instead of the global memory buffer histo [] and that we need a
subsequent callto syncthreads () to ensure the last of our writes have been
committed.

1 = threadIdx.x + blockIdx.x * blockDim.x;
offset = blockDim.x * gridDim.x;
(i < size) {
atomicAdd (&temp [buffer[i]l], 1);
1 += offset;
}

__syncthreads () ;

The last step in our modified histogram example requires that we merge each
block’s temporary histogram into the global buffer histo []. Suppose we split
the input in half and two threads look at different halves and compute separate
histograms. If thread A sees byte 0xFC 20 times in the input and thread B sees
byte 0xFC 5 times, the byte 0xFC must have appeared 25 times in the input.
Likewise, each bin of the final histogram is just the sum of the corresponding
bin in thread A's histogram and thread B’s histogram. This logic extends to any
number of threads, so merging every block’s histogram into a single final histo-
gram involves adding each entry in the block’s histogram to the corresponding
entry in the final histogram. For all the reasons we’ve seen already, this needs to
be done atomically:

atomicAdd(& (histo[threadIdx.x]), temp[threadIdx.x]);

Since we have decided to use 256 threads and have 256 histogram bins, each
thread atomically adds a single bin to the final histogram'’s total. If these numbers
didn’t match, this phase would be more complicated. Note that we have no
guarantees about what order the blocks add their values to the final histogram,
but since integer addition is commutative, we will always get the same answer
provided that the additions occur atomically.

182

Download from www.wowebook.com

9.5 CHAPTER REVIEW

And with this, our two phase histogram computation kernel is complete. Here it is
from start to finish:

histo kernel (*pbuffer,
size,
*histo) {
temp [256] ;
temp [threadIdx.x] = 0;

__syncthreads () ;

i = threadIdx.x + blockIdx.x * blockDim.x;
offset = blockDim.x * gridDim.x;

(i < size) {
atomicAdd (&temp [buffer[i]l], 1);

1 += offset;

__syncthreads () ;

atomicAdd(& (histo[threadIdx.x]), temp[threadIdx.x]);

This version of our histogram example improves dramatically over the previous
GPU version. Adding the shared memory component drops our running time on
a GeForce GTX 285 to 0.057 seconds. Not only is this significantly better than the
version that used global memory atomics only, but this beats our original CPU
implementation by an order of magnitude (from 0.416 seconds to 0.057 seconds).
This improvement represents greater than a sevenfold boost in speed over the
CPU version. So despite the early setback in adapting the histogram to a GPU
implementation, our version that uses both shared and global atomics should be
considered a success.

Chapter Review

Although we have frequently spoken at length about how easy parallel program-
ming can be with CUDA C, we have largely ignored some of the situations when

183

Download from www.wowebook.com

ATOMICS

massively parallel architectures such as the GPU can make our lives as program-
mers more difficult. Trying to cope with potentially tens of thousands of threads
simultaneously modifying the same memory addresses is a common situation
where a massively parallel machine can seem burdensome. Fortunately, we have
hardware-supported atomic operations available to help ease this pain.

However, as you saw with the histogram computation, sometimes reliance on
atomic operations introduces performance issues that can be resolved only

by rethinking parts of the algorithm. In the histogram example, we moved to a
two-stage algorithm that alleviated contention for global memory addresses. In
general, this strategy of looking to lessen memory contention tends to work well,
and you should keep it in mind when using atomics in your own applications.

184

Download from www.wowebook.com

