
44
99

Some basic ideasSome basic ideas

Parallel ComputingParallel Computing

Evolution according to
Amdahl's law of the
theoretical speedup of
the execution of a
program in function of
the number of
processors executing it,
for different values of p.
The speedup is limited
by the serial part of the
program. For example,
if 95% of the program
can be parallelized, the
theoretical maximum
speedup using parallel
computing would be 20
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law (Gene Amdahl 1967)

Calculate Amdahl's Law:Calculate Amdahl's Law:
Let X be the part of my program (in terms of computing time) which can be parallelised. Let X be the part of my program (in terms of computing time) which can be parallelised.
The sequential computing time TThe sequential computing time T

seqseq is normalized to unity (1), and can be expressed as: is normalized to unity (1), and can be expressed as:

TTseqseq = 1 = X + (1-X) = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast
communication):communication):

TTparpar = X/p + (1-X) = X/p + (1-X)

with processor number (core number) p ; with processor number (core number) p ;
Then the speed-up of the program S = TThen the speed-up of the program S = T

seqseq / T / T
parpar : :

S = 1 / (1-X+X/p) ; S = 1 / (1-X+X/p) ;
Note: TNote: T

parpar/T/Tseqseq = 1/S (sometimes also plotted) = 1/S (sometimes also plotted)

Note the limit of S for large p is: S = 1/(1-X). And if X ~ 1: S Note the limit of S for large p is: S = 1/(1-X). And if X ~ 1: S ～ ～ p p
With communication overhead:With communication overhead:

TTparpar = X/p + (1-X) + T = X/p + (1-X) + T
commcomm → → S = 1 / (1-X+X/p+TS = 1 / (1-X+X/p+T

commcomm))
If TIf T

commcomm independent of p we have for large p: S = 1 / (1-X + T independent of p we have for large p: S = 1 / (1-X + T
commcomm) = const.) = const.

If If TTcommcomm = c p = c pkk (k>0) we get: S = 1 / (1-X + c p (k>0) we get: S = 1 / (1-X + c pkk) → 0 for large p!!!) → 0 for large p!!!

Nopt

Parallel code on cluster

Strong and Soft Scaling

 Strong Scaling: Fixed Problem size, increase p
 Soft Scaling: Increase Problem size, increase p
 (constant amount of work per processing element)

Ansatz for Soft Scaling (Tcomm neglected here):
 TTseqseq = p (X + (1-X)) = p (X + (1-X))

 TTparpar = X + p (1-X) = X + p (1-X)

 S = TS = T
seqseq/T/Tparpar = p / (X+p (1-X)) = p / (X+p (1-X))

 If X~1: S = p ; TIf X~1: S = p ; T
parpar = X = const. = X = const.

55
44

ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs .
440 cores
= 704.000
GPU-Cores

Using
Mole-8.5
of
IPE/CAS
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak

55
55

Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU

Roofline Performance Model (LBL)

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity.
Arithmetic Intensity is the ratio of total floating-point operations to total
data movement (bytes).

Roofline Performance Model (LBL)

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

55
99

Timing and DebuggingTiming and Debugging
Wrap-Up of CUDAWrap-Up of CUDA

HistogramHistogram
Matrix Multiplication Matrix Multiplication (expect Friday)(expect Friday)

Parallel ComputingParallel Computing

66
00

Some nice ideas:Some nice ideas:
/home/Tit4/lecture60/gpu-course/00_error//home/Tit4/lecture60/gpu-course/00_error/

/home/Tit4/lecture60/gpu-course/4_dot/dot-special-new.cu/home/Tit4/lecture60/gpu-course/4_dot/dot-special-new.cu

Recap of 6: dot_perfect.cu :Recap of 6: dot_perfect.cu :
Fat Threads! New variable gridDim.x !

Block Reduction on Host instead of AtomicAdd!

Also used for histogram later.

Before we start...Before we start...

66
11

 CUDA – GNU Debugger – CUDA-gdb

http://docs.nvidia.com/cuda/cuda-gdb/index.html

Exercises (CUDA Lectures in afternoon)

0. hello, device- first kernel call, hello world, GPU properties
1. add - vector addition using one thread in one block only
2. add-index - vector addition using blocks in parallel,
 one thread per block only.
3. add-parallel - vector addition using all blocks and threads in parallel
4. dot - scalar product using shared memory of one block
 only for reduction
5. dot-full - scalar product using shared memory and
 atomic add across blocks
6. dot-perfect - scalar product; fat threads and final reduction on host.
8. histo - histogram using fat threads and atomic add
 on shared and global memory, timing
7. matmul - matrix multiplication with tiled access shared memory
 (expect Friday)

Wrapping Up 1

Wrapping Up 2

Elements of CUDA C learnt:

threadId.x , blockId.x, blockDim.x, gridDim.x Threads, Blocks
(threadId.y, blockId.y, blockdim.y, gridDim.y (matmul coming with 2D grids)
kernel<<<n,m>>> (...) kernel calls
kernel<<<dimBlock,dimGrid>>>(…) dim3 variable type (matmul)
__global__ device code
__shared__ shared memory on GPU
cudaMalloc / cudaFree manage global memory of GPU
cudaMemcpy / cudaMemset copy/set to or from memory
cudaGetDeviceProperties get device properties in program
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy CUDA profiling
AtomicAdd atomic functions

Wrapping Up 3

What we have not yet learnt...

__constant__ constant memory on GPU
__device__ functions device to device
Intrinsic Functions (__device__ type)
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE

__host__ functions host to host
More atomic functions
cudaBindTexture using texture memory
fat threads for 2D and 3D stencils thread coalescence opt.
cudaStreamCreate, cudaStreamDestroy working with CUDA streams
using Tensor Cores
...

Chapter in Book of Jason SandersChapter in Book of Jason Sanders
https://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS20/cuda/files/cuda-histograms.pdfhttps://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS20/cuda/files/cuda-histograms.pdf

Link on our webpageLink on our webpage

On kepler: 8_histoOn kepler: 8_histo

histo.cuhisto.cu

histo-no-atomic.cuhisto-no-atomic.cu

Both use atomic on shared memory!Both use atomic on shared memory!

But only first one uses also atomic on global memory!But only first one uses also atomic on global memory!

HistogramHistogram

66
88

Intuitive multiply

	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

