Parallel Computing

Timing and Debugging
Wrap-Up of CUDA
Matrix Multiplication
Histogram

(from Jason Sanders’ book; see our webpage link)
Note: Jason Sanders uses HANDLE_ERROR instead of our ERR_CHECK

(.../00_error/cuda_error_check.h)

Before we start...

Some nice 1ideas:

/home/Tit4/lecture60/gpu-course/00_error/
(ERR_CHECK instead of HANDLE_ERROR)

/home/Tit4/lecture60/gpu-course/4_dot/dot-special-new.cu

(dynamic vector size allocation in kernel through <<<n,m,size>>>)

Recap of 6: dot_perfect.cu:

Fat Threads! New variable gridDim.x !

Use of gridDim.x * blockDim.x to get size of grid,
Relation to <<<n,m>> in kernel launch
Block Reduction on Host instead of AtomicAdd!

Also used for histogram later.
Note nice profiling nvprof used in 7_matmul/gpu_script.sh

https://docs.nvidia.com/cuda/profiler-users-quide/index.html

This Timing APl is used in 8_histo/histo.cu !

Timing with CUDA Event API

int main ()

i CUDA Event API Timer are,

cudakEvent_t start, stop;
float time;

- OS independent
cudabEventCreate (&start);

cudaEventCreate (&stop); - High resolution

- Useful for timing asynchronous calls
cudaEventRecord (start, @);

cudaEventRecord (stop, @); .
cudaEventSynchronize (stop); e=- Ensures kernel execution has completed

cudaEventElapsedTime (&time, start, stop);

cudakEventDestroy (start);
cudakEventDestroy (stop);

printf ("Elapsed time %f sec'n”, time*.0@1);

4 retum 1 Standard CPU timers will not measure the

timing information of the device.

m“:‘}l " Office of Introduction to CUDA Programming - Hemant Shukla 16
- el

Science

— M

CUDA - GNU Debugger - CUDA-gdb

http://docs.nvidia.com/cuda/cuda-gdb/index.html

A DEVELOPER CUDA TOOLKIT DOCUMENTATION Q
nyvinia ZOMNE

S0 Tl 7 CUDA-GDE (POF) - w7.5 (older] - Last updated September 1, 2015 - Send Feadback - I1 n m =
CUDA-GDB

1. Introduction CUDA-GDB
2. Release MNotes

= 3. Getting Started 1. Introduction

t- 4. CUDA-GDB Extensions This document introduces CUDA-GDB, the NVIDIA® CUDA® debugger for Linux and Mac 0S.

=5, Kernel Focus

& 6. Program Execution 1.1, What is CUDA-GDB?

> 7. Breakpoints & CUDA-GDB is the NVIDIA tool for debugging CUDA applications running on Linux and Mac. CUDA-GDB is an extension to the x86-64
Watchpoints port of GDB, the GMU Project debugger. The tool provides developers with a mechanism for debugging CUDA applications running on

&= 8, Inspecting Program State actual hardware. This enables developers to debug applications without the potential variations intreduced by simulation and emulation

&= 9, Event Notifications environments.

= %Eéﬁgigogmﬂ“c Error CUDA-GDB runs on Linux and Mac OS ¥, 32-bit and 64-bit. CUDA-GDB is based on GDB 7.6 on both Linux and Mac 05 X,

b SRR g amEias 1.2. Supported Features

t-12. Advanced Settings CUDA-GDB is designed to present the user with a seamless debugging environment that allows simultaneous debugging of both GPU
A Supported Platforms and CPU code within the same application. Just as programming in CUDA C is an extension to C programming. debugging with
B. Known Issues CUDA-GDB is a natural extension to debugging with GDB. The existing GDE debugging features are inherently present for debugging
the host code, and additional features have been provided to support debugging CUDA device code,

CUDA-GDB supports debugging C/C++ and Fortran CUDA applications. (Fortran debugging support is limited to 64-bit Linux operating
system) All the C++ features supported by the NWVCC compiler can be debugged by CUDA-GDB,

CUDA-GDB allows the user to set breakpoints, to single-step CUDA applications, and also to inspect and modify the memory and
variables of any given thread running on the hardware.

ek THE mage 1o s
Debug - vectorAdd/src/vectorAdd.cu - Nsight

Run Window Help

oS - B % v 0 v@ Qv alw L SR S S (3@ e
‘f;?Debug EE _ 4 i» ¥ = 8 ®-variables % Breakpoints | € CUDA 2 =\ Modules] B
|'v 5 'n.rectﬂmdd {G} [dE".l'!CE ngﬂ[D}] {Breakpmnt} __:'_ PR =| =
| F # CUDA Thread (0,0,0) Block (0,0,0) — _
| cuDA Thread (1,0,0) Block (0,0,0) L@ = | |Q sear - il >
| ¥ % All CUDA Threads v i (0,0,0) } SM 11 ‘l 256 threads of 256 are runr

v '?%*a Block (0,0,0) [sm: 11] # (0,0,0) Warp 0Lane 0 'U vectorAdd.cu:36 (0x9a653(
& CUDA Thre ad tﬂ 0 ﬂ} [warp 0 lane' ﬂ] {vectumdd cuﬂﬁ‘.l 5 # (1,0,0) . WarpOLane1 | i [¢) vectorAdd.cu:36 (0x9a653(

D vectorAdd.cu & = O || 3£ Outline | it Registers % i B e~ 0

. VELLUI HIII-IH_I-UIIB.:I.. TLuglt A, LUIIsL Iwwak "D, TLwat "L, L0t lumnc = I) : oy |

33 { Mame T(0,0,0)B(0,0,0) T(1,0,0)B(0,0,0)

34 int i = blockDim.x * blockIdx.x + threadIdx.x; wiRsS 4 4

35 1608
36 if (i < numElements) " RO 3149824 3149824
i 37 { i R7 4 4

38 C[1] = A[1] + B[1); " R8 0 1

39 lola Rg_ 0 -t
il 40 } anal

41 . W R10 1060608 -271911904

Tufrot b atel R11 0 2 =

E Console £ v_;Tasks (2 Prnblems o Executablﬁ 0 Memory e RE | BB | =t B v 3~ 70

vectorAdd [C/C++ Applmatnon] gdb trar.es

Bx408300800" Y, {name="C",value="0x400301008" }, {name="numElements",value="580"}7, file="../src/vectorAd\ -
d.cu”, fullname="/home/eostroukhov/cuda-workspace/vectorAdd/src/vectoridd.cu”,line="36"}

470,340 (gdb)

476,340 157~done, register-values=[{number="15",value="0x0"}]

470,340 (gdb)

470,346 158*done,register-values=[{number="15",value="6"}]

470,340 (qgdb)

Click to zoomdshrink

Wrapping Up 1

Exercises (CUDA Lectures in afternoon

histo - histogram using fat threads and atomic add
on shared and global memory, timing

matmul - matrix multiplication with tiled access shared memory

Wrapping Up 2

Elements of CUDA C learnt:

(matmul coming with 2D grids)

dim3 variable type (matmul)

cudaEventDestroy CUDA profiling
AtomicAdd atomic functions

Wrapping Up 3

cudaStreamCreate, cudaStreamDestroy working wi UDA streams
<<<n,m,size,s>>> kernel call with streams s
using Tensor Cores

Matrx Vit tplyE Insprred by Lecture o Wen=mer Ewil

httpi//whiresearch.sourceforge.net/example. himil

On kepler: 7_matmul/

Histo: Chapter in Book of Jason Sanders

hittps://wwwstatf.ari.uni-heidelberg.de/spurzem/lehre/WS21/cuda/files/cuda-histe

(Link on our webpage)

On kepler: 8L histo),

Matrix Intuitive Multiply

-
i
=
=
=
>
=
-]

A height-1

Tiled Multiply

X
012 TILE_ WIDTH-1

+ Each computes one
square sub-matrix Pdg,,of size
TILE_WIDTH

- Each thread computes one
element of Pd,

—y

0
1
ly j
TILE_WIDTH, ; i : .

€©Wen—-mei W. Hwu and David Eiwk/INVIDIA, 4
Berkeley, January 24-25b, 2011

Speed-Up Ratio
GPU speed-up over CPU

w
£
b
-
o
Q

@

£
=
=
o
o

G600

Dimension of Matrix

& Speed-Up ratio

Final Remarks

Important Note:

If you do some NBODY research in the future, please contact us (tutors or
lecturer); do not use the course code for research it is not fully
performant in some respects (openMP).

Remember for course certificate:

* QOutput files of small experiments on your lecture account
(0_hello, 1 _add, ... , 7-matmul, 8-histo)

* Return two plots, one data file, and a few comments to your tutors
Deadline? Agree with tutors, no strict deadline, but please NOT one day
before you need the certificate! Outputs of the 8 Nbody runs on your
lecture account.

* Notice: Student Queues will close Sunday, Mar 6, 23:59 (latest).
You can run later, but contact me please spurzem@ari.uni-heidelberg.de

... Additional deeper material:

Lectures by Prof. Wen-Mei Hwu Chicago in Berkeley 2012 and
Beljing 2013, see

(down on page links to all lecture files, also available on request from
spurzem@nao.cas.cn)

Lecturel:
Lecture?2:
Lecturea3:
Lecture4:
Lectureb:
Lecture6:
Lecture?:
Lecture8:

See also:

Computational thinking
Parallelism Scalability
Blocking Tiling
Coarsening Tiling
Data Optimization
Input Binning

Input Compaction
Privatization

¥ ez E

PEKING UNIVERSITY

Massive Parallelism - Reqularity

@Wen—mei W. Hwu and David
Berkeley, January 24-25, 2011

Main Hurdles to Overcome

« Serialization due to
conflicting use of
critical resources

» Over subscription of
Global Memory
bandwidth

- Load imbalance
among parallel threads

©@Wen—mei W. Hwu and David Kirk/WNVIDIA,
Berkeley, January 24-25, 2011

19

Computational Thinking SKkills

- The abllity to translate/formulate domain
problems into computational models that can be
solved efficiently by available computing
resources

— Understanding the relationship between the domain
problem and the computational models

— Understanding the strength and limitations of the
computing devices

— Defining problems and models to enable efficient
computational solutions

W W D it Dl Wk IR, 20
Berkeley, January £4-25b, 2011

DATA ACCESS CONFLICTS

©Wen—-mei W. Hwu and David Kirk/IWNVIDIA,
Berkeley, January £4-25b, 2011

21

@©@Wen—mei W. Hasu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Conflicting Data Accesses Cause
Serialization and Delays

- Massively parallel
execution cannot
afford serialization

Contentions In
accessing critical data
causes serialization

m Hipniona Tickrtng

* E]Hm!r&rﬁ

A Simple Example

- A naive inner product algorithm of two vectors of
one million elements each
— All multiplications can be done in time unit (parallel)

— Additions to a single accumulator in one million time
units (serial)

) i

23

¢

Wen-—-mei W.

Berkeley, January 24-25, 2011

How much can conflicts hurt?

« Amdahl's Law

— If fraction X of a computation is serialized, the
speedup can not be more than 1/(1-X)

* In the previous example, X = 50%
— Half the calculations are serialized

— No more than 2X speedup, no matter how many
computing cores are used

©@Wen—mei W. Hwu and David Kirk/WNVIDIA,
Berkeley, January 24-25, 2011

24

GLOBAL MEMORY
BANDWIDTH

EWen—-mei W. Hwu and David Kirk/INVIDIA,
Berkeley, January £4-25b, 2011

Global Memory Bandwidth

Ideal Reality

EWen—-mei W. Hwu and David Kirk/INVIDIA,
Berkeley, January 24-25, 2011

26

Global Memory Bandwidth

- Many-core processors have limited off-chip
memory access bandwidth compared to peak
compute throughput

« Fermi

— 1 TFLOPS SPFP peak throughput
— 0.5 TFLOPS DPFP peak throughput

— 144 GB/s peak off-chip memory access bandwidth
+ 36 G SPFP operands per second
+ 18 G DPFP operands per second

— To achieve peak throughput, a program must perform
1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations
for each operand value fetched from off-chip memory ,;

EWen—mel W. Hwu and David Erk/NVIDIA,
Berkeley, January 24-25, 2011

LOAD BALANCE

©Wen—-mei W. Hwu and David Kirk/IWNVIDIA,
Berkeley, January £4-25b, 2011

28

| oad Balance

« The total amount of time to complete a parallel

Jobis limited by the thread that takes the longest

to finish

oood bad

©Wen-mei W. Hwu and David Kirl/NVIDIA,
Berkeley, January 24-25, 2011

29

How bad can it be?

- Assume that a job takes 100 units of time for one
person to finish

— If we break up the job into 10 parts of 10 units each
and have fo10 people to do it in parallel, we can get a

10X speedup
— If we break up the job into 50, 10, 5,5, 5,5,5,5,5,5
units, the same 10 people will take 50 units to finish,

with 9 of them idling for most of the time. We will get
no more than 2X speedup.

©Wen-mei W. Hau and David Kirk/NVIDIA, 30

Berkeley, January 24-25, 2011

W @

How does imbalance come about?

Non-uniform data
distributions

— Highly concentrated
spatial data areas

— Astronomy, medical
Imaging, computer
vision, rendering, ...

If each thread

processes the input

data of a given spatial
volume unit, some will
do a lot more work

than others

31

Eight Algorithmic Techniques

(so far)

Technique Contention | Bandwidth | Locality | Efficiency | Load Imbalance | CPU Leveraging
Tiling X X
Privatization X X
Regularization % X X
Compaction X
Binning X X X X
Data Layout Transformation % X
Thread Coarsening X X X X
Seatter to Gather Conversion b ¢
©Wen-mei W. Hwu and David Kirk/NVIDIA, 32

Berkeley, January Z24-25, 2011

You can do it.

- Computational thinking
IS not as hard as you
may think it Is.

— Most techniques have

been explained, if at all,
at the level of computer

experts.

— The purpose of the
course is to make them
accessible to domain
scientists and engineers.

EWen—-mei W. Hwu and David Kirk/INVIDIA,
Berkeley, January 24-25, 2011

33

ANY MORE QUESTIONS?

O W B i D Wk IR, 34
Berkeley, January 24-25, 2011

	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

