Parallel Computing

Timing and Debugging
Wrap-Up of CUDA
Matrix Multiplication
Histogram

(from Jason Sanders' book; see our webpage link)

Note: Jason Sanders uses HANDLE_ERROR instead of our ERR_CHECK

(.../00_error/cuda_error_check.h)

Before we start...

Some nice ideas:

/home/Tit4/lecture60/gpu-course/00_error/

(ERR_CHECK instead of HANDLE_ERROR)

/home/Tit4/lecture60/gpu-course/4_dot/dot-special-new.cu (dynamic vector size allocation in kernel through <<<n,m,size>>>)

Recap of 6: dot_perfect.cu:

Fat Threads! New variable gridDim.x!

Use of gridDim.x * blockDim.x to get size of grid,

Relation to <<<n,m>> in kernel launch

Block Reduction on Host instead of AtomicAdd!

Also used for histogram later.

Note nice profiling nvprof used in 7_matmul/gpu_script.sh https://docs.nvidia.com/cuda/profiler-users-quide/index.html

This Timing API is used in 8_histo/histo.cu!

Timing with CUDA Event API

```
int main ()
                                              CUDA Event API Timer are,
     cudaEvent_t start, stop;
     float time;

    OS independent

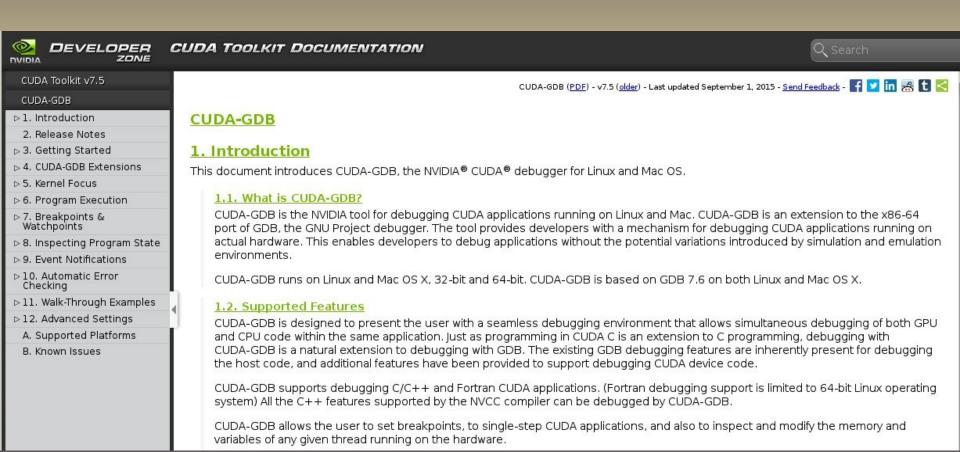
     cudaEventCreate (&start);
                                              - High resolution
     cudaEventCreate (&stop);

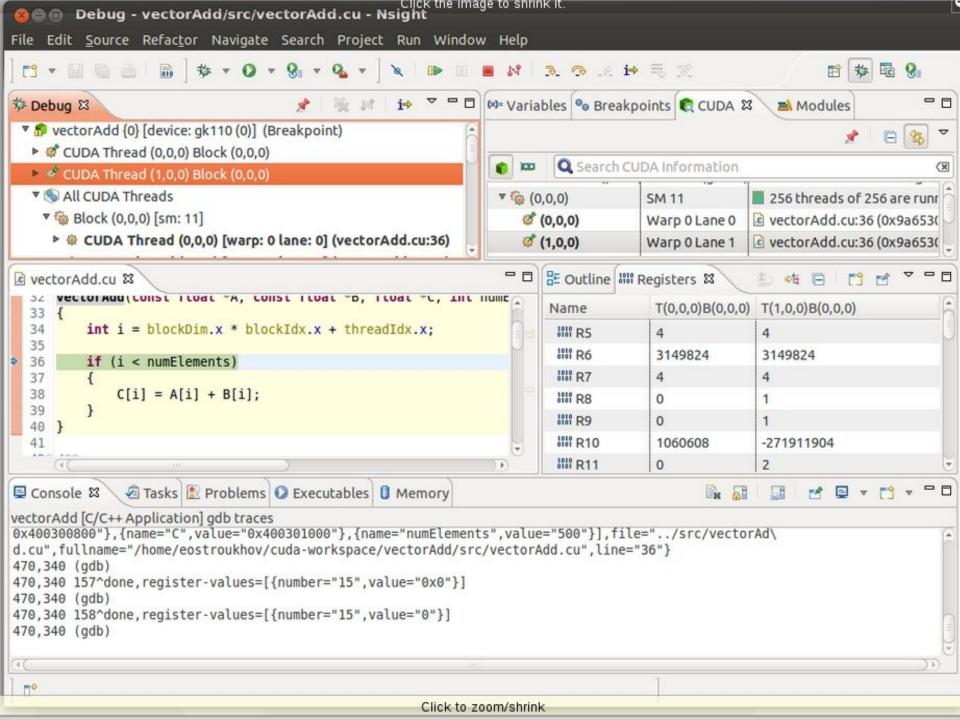
    Useful for timing asynchronous calls

     cudaEventRecord (start, 0);
     someKernel <<<grids, blocks, 0, 0>>> (...);
     cudaEventRecord (stop, 0);
     cudaEventSynchronize (stop); - Ensures kernel execution has completed
     cudaEventElapsedTime (&time, start, stop);
     cudaEventDestroy (start);
     cudaEventDestroy (stop);
     printf ("Elapsed time %f sec\n", time*.001);
     return 1;
                                        Standard CPU timers will not measure the
}
                                        timing information of the device.
```


CUDA – GNU Debugger – CUDA-gdb

http://docs.nvidia.com/cuda/cuda-gdb/index.html





Wrapping Up 1

Exercises (CUDA Lectures in afternoon)

- 0. hello, device- first kernel call, hello world, GPU properties
- 1. add vector addition using one thread in one block only
- 2. add-index vector addition using blocks in parallel, one thread per block only.
- 3. add-parallel vector addition using all blocks and threads in parallel
- 4. dot scalar product using shared memory of one block only for reduction
- 5. dot-full scalar product using shared memory and atomic add across blocks
- 6. dot-perfect scalar product; fat threads and final reduction on host.
- 8. histo histogram using fat threads and atomic add on shared and global memory, timing
- 7. matmul matrix multiplication with tiled access shared memory (expect Friday)

Wrapping Up 2

Elements of CUDA C learnt:

```
threadId.x, blockId.x, blockDim.x, gridDim.x
(threadId.y, blockId.y, blockdim.y, gridDim.y
  shared
cudaMalloc / cudaFree
cudaMemcpy / cudaMemset
cudaGetDeviceProperties
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy
AtomicAdd
```

Threads, Blocks
(matmul coming with 2D grids)
kernel calls
kernel call with dyn. alloc. size
dim3 variable type (matmul)

shared memory on GPU manage global memory of GPU copy/set to or from memory get device properties in program

CUDA profiling atomic functions

Wrapping Up 3

What we have not yet learnt...

__constant__ __device__ Intrinsic Functions (__device__ type)

IMI#group CUDA MATH SINGLI

functions host to host

constant memory on GPU

functions device to device

__host__
More atomic functions
cudaBindTexture
fat threads for 2D and 3D stencils
cudaStreamCreate, cudaStreamDestroy
<<<n,m,size,s>>>
using Tensor Cores

using texture memory thread coalescence opt. working with CUDA streams kernel call with streams s

...

Matrix Multiply and Histogram

Matrix Multiply: Inspired by Lecture of Wen-mei Hwu
http://whtresearch.sourceforge.net/example.html
On kepler: 7_matmul/

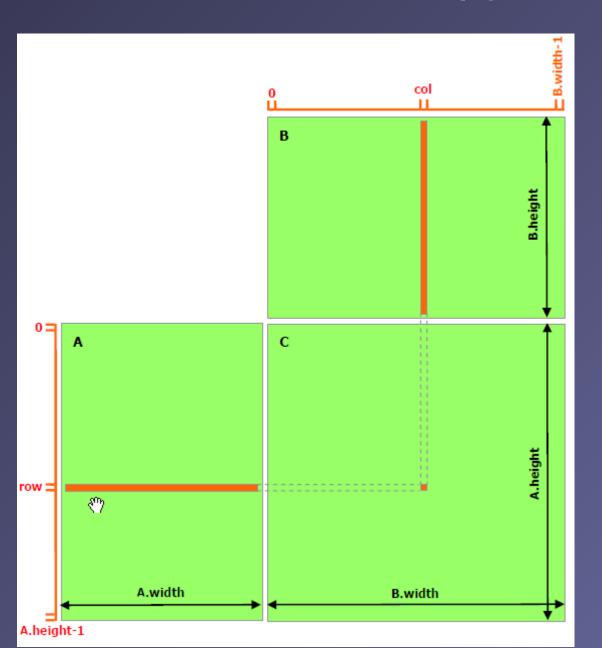
Histo: Chapter in Book of Jason Sanders

https://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS21/cuda/files/cuda-histograms.pdf
(Link on our webpage)

On kepler: 8_histo/

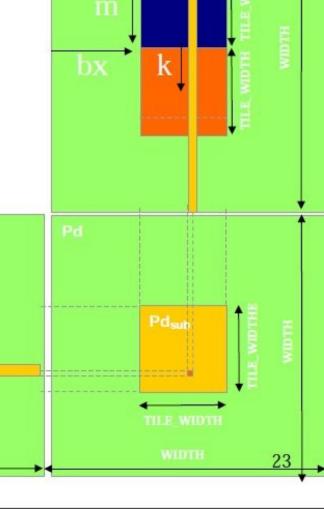
histo.cu (atomic on both shared and global memory)
histo-no-atomic.cu (atomic only on global memory)

Matrix Intuitive Multiply



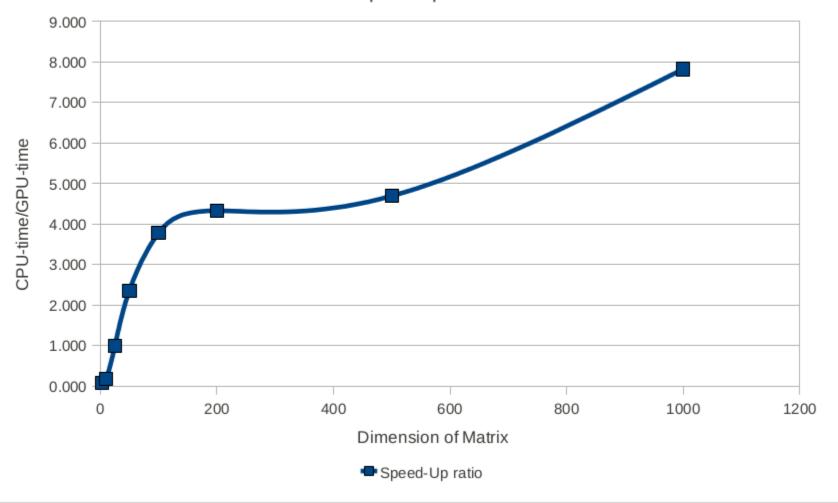
Tiled Multiply

- Each block computes one square sub-matrix Pd_{sub} of size TILE_WIDTH
- Each thread computes one element of Pd_{sub}



©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

Speed-Up Ratio
GPU speed-up over CPU



Final Remarks

Important Note:

If you do some NBODY research in the future, please contact us (tutors or lecturer); do not use the course code for research it is not fully performant in some respects (openMP).

Remember for course certificate:

- * Output files of small experiments on your lecture account (0_hello, 1_add, ..., 7-matmul, 8-histo)
- * Return two plots, one data file, and a few comments to your tutors Deadline? Agree with tutors, no strict deadline, but please NOT one day before you need the certificate! Outputs of the 8 Nbody runs on your lecture account.
- * Notice: Student Queues will close Sunday, Mar 6, 23:59 (latest).
 You can run later, but contact me please spurzem@ari.uni-heidelberg.de

Additional deeper material:

Lectures by Prof. Wen-Mei Hwu Chicago in Berkeley 2012 and Beijing 2013, see http://iccs.lbl.gov/workshops/tutorials.html (down on page links to all lecture files, also available on request from spurzem@nao.cas.cn)

Lecture1: Computational thinking

Lecture2: Parallelism Scalability

Lecture3: Blocking Tiling

Lecture4: Coarsening Tiling

Lecture5: Data Optimization

Lecture6: Input Binning

Lecture7: Input Compaction

Lecture8: Privatization

See also:

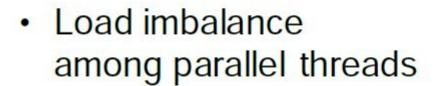
http://freevideolectures.com/Course/2880/Advanced-algorithmic-techniques-for-GPUs/1

Massive Parallelism - Regularity

©Wen-mei W. Hwu and David KIR/NVIDIA, Berkeley, January 24-25, 2011

Main Hurdles to Overcome

- Serialization due to conflicting use of critical resources
- Over subscription of Global Memory bandwidth



Computational Thinking Skills

- The ability to translate/formulate domain problems into computational models that can be solved efficiently by available computing resources
 - Understanding the relationship between the domain problem and the computational models
 - Understanding the strength and limitations of the computing devices
 - Defining problems and models to enable efficient computational solutions

DATA ACCESS CONFLICTS

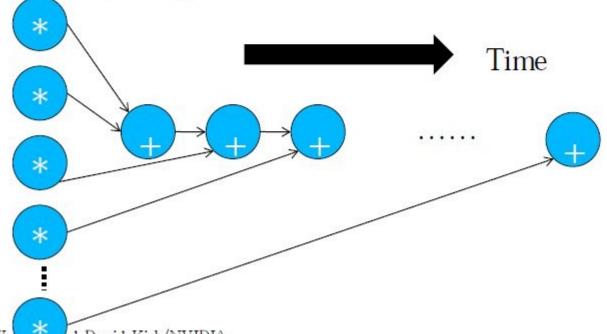
Conflicting Data Accesses Cause Serialization and Delays

 Massively parallel execution cannot afford serialization

 Contentions in accessing critical data causes serialization

A Simple Example

- A naïve inner product algorithm of two vectors of one million elements each
 - All multiplications can be done in time unit (parallel)
 - Additions to a single accumulator in one million time units (serial)



23

How much can conflicts hurt?

- Amdahl's Law
 - If fraction X of a computation is serialized, the speedup can not be more than 1/(1-X)
- In the previous example, X = 50%
 - Half the calculations are serialized
 - No more than 2X speedup, no matter how many computing cores are used

GLOBAL MEMORY BANDWIDTH

Global Memory Bandwidth

Ideal

Reality

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

Global Memory Bandwidth

- Many-core processors have limited off-chip memory access bandwidth compared to peak compute throughput
- Fermi
 - 1 TFLOPS SPFP peak throughput
 - 0.5 TFLOPS DPFP peak throughput
 - 144 GB/s peak off-chip memory access bandwidth
 - 36 G SPFP operands per second
 - 18 G DPFP operands per second
- To achieve peak throughput, a program must perform 1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations for each operand value fetched from off-chip memory 27

Berkeley, January 24-25, 2011

LOAD BALANCE

Load Balance

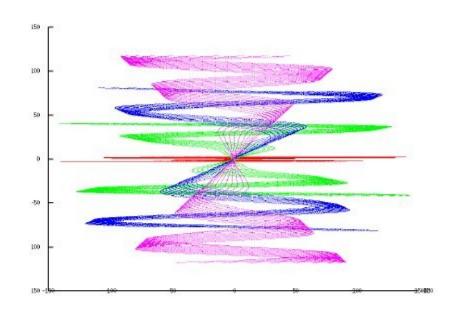
 The total amount of time to complete a parallel job is limited by the thread that takes the longest to finish

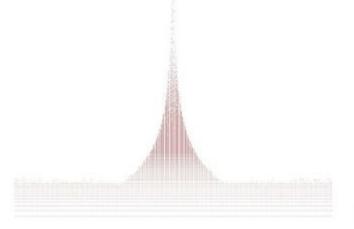
How bad can it be?

- Assume that a job takes 100 units of time for one person to finish
 - If we break up the job into 10 parts of 10 units each and have fo10 people to do it in parallel, we can get a 10X speedup
 - If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 units, the same 10 people will take 50 units to finish, with 9 of them idling for most of the time. We will get no more than 2X speedup.

How does imbalance come about?

- Non-uniform data distributions
 - Highly concentrated spatial data areas
 - Astronomy, medical imaging, computer vision, rendering, ...
- If each thread processes the input data of a given spatial volume unit, some will do a lot more work than others





Eight Algorithmic Techniques (so far)

Technique	Contention	Bandwidth	Locality	Efficiency	Load Imbalance	CPU Leveraging
Tiling		X	X			
Privatization	X		X			
Regularization		10		X	X	X
Compaction		X				
Binning		X	X	X		X
Data Layout Transformation	X		X			
Thread Coarsening	X	X	X	X		
Scatter to Gather Conversion	X					

http://courses.engr.illinois.edu/ece598/hk/

You can do it.

- Computational thinking is not as hard as you may think it is.
 - Most techniques have been explained, if at all, at the level of computer experts.
 - The purpose of the course is to make them accessible to domain scientists and engineers.

ANY MORE QUESTIONS?