Friday, Feb. 16:

Matrix Multiplication
Histograms (from Jason Sanders’ book; see our webpage link)
Timing and Debugging
Wrap-Up of CUDA/Outlook

Matrix Intuitive Multiply

-
i
=
=
=
>
=
-]

A height-1

Tiled Multiply

X
012 TILE_ WIDTH-1

+ Each computes one
square sub-matrix Pdg,,of size
TILE_WIDTH

- Each thread computes one
element of Pd,

—y

0
1
ly j
TILE_WIDTH, ; i : .

€©Wen—-mei W. Hwu and David Eiwk/INVIDIA, 4
Berkeley, January 24-25b, 2011

Speed-Up Ratio
GPU speed-up over CPU

w
£
b
-
o
Q

@

£
=
=
o
o

G600

Dimension of Matrix

& Speed-Up ratio

IHistogram Computation

8 _histo

Task:

100 million integers 0 = n; < 256;
Randomly distributed with equal probability;
What is the frequency (number) with which every integer occurs?

Expect: equal distribution again, with fluctuations.

Histogram of 15000 uniform random number

Source: https://www.researchgate.net/publication/
261392752 FPGA_based_RNG_for_random_WOB_method_in_unit_cube_capacitance_calculation

180
160
140
120

i

=
)
c
Q@
S
o
4
(T

https://www.researchgate.net/publication/

This Timing APl is used in 8_histo/histo.cu !

Timing with CUDA Event API

int main ()

i CUDA Event API Timer are,

cudakEvent_t start, stop;
float time;

- OS independent
cudabEventCreate (&start);

cudaEventCreate (&stop); - High resolution

- Useful for timing asynchronous calls
cudaEventRecord (start, @);

cudaEventRecord (stop, @); .
cudaEventSynchronize (stop); e=- Ensures kernel execution has completed

cudaEventElapsedTime (&time, start, stop);

cudakEventDestroy (start);
cudakEventDestroy (stop);

printf ("Elapsed time %f sec'n”, time*.0@1);

4 retum 1 Standard CPU timers will not measure the

timing information of the device.

m“:‘}l " Office of Introduction to CUDA Programming - Hemant Shukla 16
- el

Science

CUDA - GNU Debugger - CUDA-gdb

do not forget: nvcc -g -G ... before running ...
(not possible on kepler, login node has no GPU!)

http://docs.nvidia.com/cuda/cuda-gdb/index.html ‘

A DEVELOPER CUDA TOOLKIT DOCUMENTATION Q
nyvinia ZOMNE

CUDA Toolkit v7.5

CUDA-GDB (EDE) - v7.5 (older) - Last updated September 1, 2015 - Send Feedback - B4 E4 03] =2

CUDA-GDB

1. Introduction CUDA-GDB
2. Release MNotes

- 3. Getting Started 1. Introduction

b e b LB BRI This document introduces CUDA-GDB, the NVIDIA® CUDA® debugger for Linux and Mac OS.

=5, Kernel Focus

&= 6. Program Execution 1.1. What is CUDA-GDB?

= 7. Breakpoints & ebugging CUDA applications running on Linux and Mac. CUDA-GDB is an extension to the x86-64
Watchpoints : r. The tool provides developers with a mechanism for debugging CUDA applications running on

&= 8, Inspecting Program State es developers to debug applications without the potential variations introduced by simulation and emulation

&= 9, Event Notifications environments.

= %Eéﬁgigogmﬂ“c Error CUDA-GDB runs on Linux and Mac OS ¥, 32-bit and 64-bit. CUDA-GDB is based on GDB 7.6 on both Linux and Mac 05 X,

b SRR g amEias 1.2. Supported Features
t-12. Advanced Settings CUDA-GDB is designed to present the user with a seamless debugging environment that allows simultaneous debugging of both GPU
A Supported Platforms and CPU code within the same application. Just as programming in CUDA C is an extension to C programming. debugging with
B. Known Issues CUDA-GDE is a natural sion to debugging with GDB. The existing GDE debugging features are inherently present for debugging
the host code, and additional features have been provided to support debugging CUDA device code.

CUDA-GDB supports debugging C/C++ and Fortran CUDA applications. (Fortran debugging support is limited to 64-bit Linux operating
system) All the C++ features supported by the NWVCC compiler can be debugged by CUDA-GDB,

CUDA-GDB allows the user to set breakpoints, to single-step CUDA applications, and also to inspect and modify the memory and
variables of any given thread running on the hardware.

Run Window Help

i Bl #vy0+Qeq | wn » BN 3D e e (4l @ Q
=ji'a'*l;.'«ai:rug_ pxi - i» ¥ = 8 ®-variables % Breakpoints | I CUDA 22 . =\ Modules] B
| ¥ B vectorAdd {D}_[dewce lr_:j-lhTﬂ[ﬁ-}j“{Bre;kpﬁi'nE} - &+ = 2] =

| o - =

» & CUDA Thread (0,0,0) Block (0,0,0)

: % CUDA Thread (1,0,0) Block (0,0,0) |l = | [Qs: - . : =

1 - T >
¥ (% All CUDA Threads v i (0,0,0) | SM 11 | 256 threads of 256 are runt
¥ % Block (0,0,0) [sm: 11] # (0,0,0) | Warp OLane 0 |[€ vectorAdd.cu:36 (0x9a653¢
> & CUDA Thread (0,0,0) [warp: 0 lane: 0] (vectorAdd.cu:36) # (1,0,0) I Warp 0 Lane 1 il_c. vectorAdd.cu:36 (0x9a653(
[§ vectorAdd.cu = O| 8t outline | it Registers &2 # B M ¥ =0
J4 0 WeEL Ll Hlll.ll._l-ull?..lll. TLwglt A, LUIaBL ITwdat "D, Tuvatk ", L0t Jumnc = |) : Ty |
33 { Mame T(0,0,0)B(0,0,0) T(1,0,0)B(0,0,0)
34 int i = blockDim.x * blockIdx.x + threadIdx.x; wiRsS a 4
35 1608
% 36 if (i < numElements) oigl RG 3149824 3149824
37 { i R7 4 4
38 C[1] = A[1] + B[1); W RS 0 1
39
20) } HHET 0 1
N 41 - i R10 1060608 -271911904
e) il R11 0 2
El console 8 ¥ Tasks | [2! Problems | @ Executables| @@ Memory e RE | BB | =t B v 3~ 70

vectorAdd [C/C++ Application] gdb traces - _

0x400300880"}, {name="C" ,value="0x400301000"}, {name="numElements"”,value="588"}], file="../src/vectoraAdy -
d.cu”, fullname="/home/eostroukhov/cuda-workspace/vectorAdd,/src/vectorAdd. cu”, line="36"}

470,340 (gdb)

476,340 157~done, register-values=[{number="15",value="0x0"}]

470,340 (gdb) Linux Terminal commandline:
470,346 158*done,register-values=[{number="15",value="6"}]
470,340 (gdb) nsys (nSyS “help)

Click to zoomdshrink

-

w

N

WrappingUp 1

Exercises afternoons

hello, device- first kernel call, hello world, GPU properties
. add - vector addition using one thread in one block only
. add-index - vector addition using blocks in parallel,
one thread per block only.
. add-parallel - vector addition using all blocks and threads in parallel

dot - scalar product using shared memory of one block
only for reduction
. dot-full - scalar product using shared memory and
atomic add across blocks
. dot-perfect - scalar product; fat threads and final reduction on host.
. matmul - matrix multiplication with tiled access shared memory.
histo - histogram using fat threads and atomic add

on shared and global memory, timing

Wrapping Up 2

Elements of CUDA C learnt:

threadld.x , blockld.x, blockDim.x, gridDim.x Threads, Blocks

(threadld.y, blockld.y, blockdim.y, gridDim.y

kernel<<<n,m>>> (...) kernel calls
Kernel<<n,m,size>>(...) kernel call with dyn. alloc. size
kernel<<<dimBlock,dimGrid>>>(...)

__global device code

__Shared___ shared memory on GPU
cudaMalloc [/ cudaFree manage global memory of GPU
cudaMemcpy / cudaMemset copy/set to or from memory
cudaGetDeviceProperties get device properties in program

cudaEventCreate, cudaEventRecord,

cudaEventSynchronize, cudaEventElapsedTime,

cudaEventDestroy CUDA profiling
AtomicAdd (on global or shared mem.) atomic functions

What we have not yet learnt...

__constant__
__device
Intrinsic Functions (___device type)

constant memory on GPU
functions device to device

https://docs.nvidia.com/cuda/cuda-math-api/group CUDA MATH SINGLE.html#group CUDA MATH SINGLE

__host___
More atomic functions

cudaBindTexture
fat threads for 2D and 3D stencils
cudaStreamCreate, cudaStreamDestroy

functions host to host

using texture memory
thread coalescence opt.
working with CUDA streams

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE

Matrix Multiply: Inspired by Lecture of Wen-mei Hwu

hitp://whiresearch.sourceforge.net/example.htmil

On kepler: 7_matmul/

Histo: Chapter in Book of Jason Sanders

https://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS22/cuda/files/cuda-histograms.pdf

(Link on our webpage)

On kepler: 8_histo/

http://whtresearch.sourceforge.net/example.html
https://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS22/cuda/files/cuda-histograms.pdf

Final Remarks

Important Note:

If you do some NBODY research in the future, please contact us (tutors or
lecturer); do not use the course code for research it is not fully
performant in some respects (openMP).

Remember for course certificate:

* Output files of small experiments on your lecture account
(0O_hello, 1_add, ... , 7-matmul, 8-histo)
* Return two plots, one data file, and a few comments to your tutors
Deadline? About one week, check with your tutors. Outputs of the 8
Nbody runs on your lecture account (one per team of two enough).
* Notice: Student Queues will close Sunday, Feb. 25, 2024

If you need to run later, we can find a solution, contact me or tutor.
spurzem@ari.uni-heidelberg.de

mailto:spurzem@ari.uni-heidelberg.de

	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

