the SILK ROAD PROJECT at NAOC 丝绸之路 计划

ZENTRUM FÜF ASTRONOMIE iv. Heidelberg

Deutsche Forschungsgemeinschaft

Dynamics of nuclear and globular clusters, relativistic dynamics of compact objects

Rainer Spurzem, and Silk Road Team Kavli-Institute for Astronomy and Astrophysics (KIAA), Peking University National Astronomical Observatories (NAOC), Univ. of Chinese Academy of Sciences Astronomisches Rechen-Inst., ZAH, Univ. of Heidelberg, Germany

Picture: Xi Shuang Banna, Yunnan, SW China (R.Sp.) spurzem@ari.uni-heidelberg.de spurzem@nao.cas.cn https://astro-silkroad.eu Jan. 8, 2025 ISGC Seminar

Introduction, Globular Star Clusters Nuclear Star Clusters Code(s) and Hardware

University of Heidelberg: ARI/ZAH, connected with IMPRS Every year graduate school application deadline (November)

https://zah.uni-heidelberg.de/institutes

https://www.imprs-hd.mpg.de/

The **Zentrum für Astronomie der Universität Heidelberg (ZAH)** was established in 2005 by joining the Astronomisches Rechen-Institut (ARI), the Landessternwarte Königstuhl (LSW) and the Institut für Theoretische Astrophysik (ITA).

Astronomisches Rechen-Institut (ARI)

Mönchhofstr. 12-14 69120 Heidelberg Tel: 06221 54 1801

Institut für Theoretische Astrophysik (ITA)

Albert-Ueberle-Str. 2 and Philosophenweg 12 69120 Heidelberg

Landessternwarte Königstuhl (LSW)

Königstuhl 12 69117 Heidelberg Tel.: 06221 54 1700

🗧 Self Service 🖙 Contact 🚓 Sitemap

International Max Planck Research School for Astronomy & Cosmic Physics at the University of Heidelberg

ABOUT THE SCHOOL | APPLICATION | RESEARCH | ACADEMICS | PEOPLE | PRACTICAL INFORMATION | SUMMER SCHOOL 2022

IMPRS FELLOWS | MISCELLANEOUS | IMPRS CALENDAR | COVID-19

Astronomisches Rechen-Institut (ARI) at U.f Heidelberg; **founded May 10, 1700**

Siemens 2002 Computer in 1964 At ARI

7huo li /旅点)

Fukun Liu (刘富坤)

Xiaowei Liu (刘晓为)

Subo Dong (东苏勃)

Renxin Xu (徐仁新)

Bing Zhang (张冰)

Hua-wei Zhang (张华伟) Rainer Spurzen

Total ~25 postdocs; 2/3 are non-Chinese.

Eric Peng (彭逸西)

Founded 2008 **Regular Openings:**

Postdoc Faculty **Visitors** (see AAS Job Reg, search KIAA)

中国科学院园家天文会

NATIONAL ASTRONOMICAL OBSERVATORIES , CHINESE ACADEMY OF SCIENCES

Figure 2 Numerical estimates of the strongest gravitational radiation signals that might be reaching the earth (from Thorne 1977). The strength of each signal is plotted as a function of its dominant spectral characteristics. Continuous monochromatic signals are denoted by dots corresponding to their dimensionsless strain amplitudes. Dots surrounded by circles indicate the strain and spectral energy density of broad-band bursts with frequency ranging from 0.5 v to 1.5 v and duration $\tau \sim \frac{1}{2}v$. A damped ringing wave is denoted by a dot at the appropriate frequency giving the amplitude and an open-circle giving the total energy spectral density. With the exception of those connected by dotted lines, the distances chosen would result in a few events per year of the strength shown.

Star Clusters: Modelling the Dynamics

(Manage deterministic chaos)

Chaos in 3-body Encounters Starlab Simulation (S.L.W. McMillan)

http://www.physics.drexel.edu/~steve/

Gravothermal Oscillations -Attractor in Phase Space Spurzem 1994, Giersz & Spurzem 1994 Amaro-Seoane, Freitag & Sp. 2004

Fig. 3: Projected three-dimensional attractor for N = 100.000 system, $x = \log \rho'_c$, $y = \log \sigma'_c$, $z = \xi$.

Star Clusters: Modelling the Dynamics

(coupling of scales)

$$\vec{a}_0 = \sum_j Gm_j \frac{\vec{R}_j}{R_j^3} \ ; \ \vec{a}_0 = \sum_j Gm_j \bigg[\frac{\vec{V}_j}{R_j^3} - \frac{3(\vec{V}_j \cdot \vec{R}_j)\vec{R}_j}{R_j^5} \bigg]$$

• $N = \infty$

negative specific Heat

gravothermal Collapse

gravothermal Oscillations

• $N = 3 \ (N = 2, ..., \approx 100)$

History

Exponential Instability

Chaos and Resonance

Regularisation

• $N = 10^6 (N = 10^4, 10^5)$

Post-Kollaps-Evolution

Binaries

Globular Clusters

Star Clusters: Modelling the Dynamics

(multiple time scales)

Millisecond Pulsars
Dynamical Time Scale
Relaxation Time Scale
Age of Universe

$$t_{
m cr} = rac{r_h}{\sigma_h} \,, \ 10^{-3} \,\, {
m sec} \ 10^6 \,\, {
m yrs} \ t_{
m rx} = rac{9}{16\sqrt{\pi}} rac{\sigma^3}{G^2 m
ho \ln(\gamma N)} \,. \ 10^{10} \,\, {
m yrs}$$

Laboratories for gravothermal N-Body Systems!

Note: Cosmological and Galactic N-Body Simulations need few crossing times, and less than a relaxation time, while gravothermal systems need multiples of N crossing times, several complexity goes approx N**2.3 !

$$t_{\rm cr} \approx \sqrt{\frac{r_h^3}{GM_h}} \; .$$

$$rac{t_{
m rx}}{t_{
m dyn}} \propto rac{N}{\log(\gamma N)} \; .$$

Relaxation time definitions: Here: Larson, R.B. (1970) – theoretically sound, also see Spurzem & Takahashi (1995); in N-Body Code use: Eq. (8-71) of Binney/Tremaine (BT) Galactic Dynamics (from Spitzer & Hart 1971)

Kustaanheimo and Stiefel 1965). We modified this scheme to allow for relativistic corrections to the Newtonian forces by expanding the acceleration in a series of powers of 1/c in the following way (Damour & Dereulle 1981; Soffel 1989):

History: Runaway Merger Of Black Holes Cluster

Kupi, Amaro-Seoane, Spurzem.. 2006 "Perturbation" In two-body KS regularization Switch on if: Perihel Shift > 10⁻⁴ AND v/c > 10-3

Figure 1. Time evolution of merging masses. The formation of the runaway particle is about the time of the cluster core collapse. Fore more details see text

Black Holes were retained in globular clusters simulations (and formed binaries, gravitational wave emission predicted 2010):

- Before Strader et al. detection
- Before Breen & Heggie
- Before LIGO detection

Downing 2012, Downing, Benacquista, Giersz & Spurzem, 2010, 2011: (see also Banerjee, Baumgardt & Kroupa 2010 but ...)

Compact Binaries in Star Clusters I - Black Hole Binaries Inside Globular Clusters

J. M. B. Downing^{3*}, M. Benacquista⁴, R. Spurzem^{1,2,3}, and M. Giersz⁵

² National Astronomical Observatories, Chinese Academy of Sciences, 20A Datum Ln, Chaoyang District, 1000 ² Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing, China

A stronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Monchhofsraße 12-14, D-69120 Heidelberg, Germany

⁴ Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA

⁵Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

Compact Binaries in Star Clusters II - Escapers and Detection Rates

J. M. B. Downing^{1,2*}, M. J. Benacquista³, M. Giersz⁴, and R. Spurzem^{5,6,1} ¹Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Monchhofsraße 12-14, D-69120 Heidelberg, Germany

² Fellow of the International Max-Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, Heidelberg, Germany

³Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA

⁴Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

⁵National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, China

⁶Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing, China

DRAGON I Simulation

https://astro-silkroad.eu https://github.com/nbody6ppgpu Also in: https://www.punch4nfdi.de/

One million stars direct simulation,

biggest and most realistic direct N-Body simulation of globular star clusters.

With stellar mass function, single and binary stellar evolution, regularization of close encounters, tidal field (NBODY6++GPU).

(NAOC/Silk Road/MPA collaboration).

Wang, Spurzem, Aarseth, Naab et al. MNRAS, 2015 Wang, Spurzem, Aarseth Naab, et al. MNRAS 2016 Number of Floating Point Operations (~1M bodies) similar to largest

Cosmological simulations (Millennium, Illustris, ~10¹⁰ bodies)

天龙星团模拟:百万数量级恒星、黑洞和引力波

Dragon Star Cluster Simulations: Millions of Stars; black holes and gravitational waves

- First realistic globular star cluster model with million stars (Wang, Spurzem, Aarseth, ..., Berczik, Kouwenhoven, ... MNRAS 2015, 2016)
- Synthetic CMD (right side) with zero photometric errors, different ages shown
- Black hole binary mergers occur as observed by LIGO. Our grav. waveforms computed from simulation (right side). (Only inspiral plotted not ringdown.)
- GPU accelerated supercomputers laohu in NAOC and hydra of Max-Planck (MPCDF) in Germany needed!

CPU/GPU N-body6++

Long Wang, Ph.D. Peking University 2016: Million-Body Award by MODEST community And IAU Ph.D. prize

The million-body problem at last!

The bottle of whisky is awarded to Long Wang (Beijing)

Leiden

Key Question 1. When will we see the first star-by-star *N*-body model of a globular cluster?

- Honest N-body simulation
- Reasonable mass at 12 Gyr (~5x10⁴M_o)
- · Reasonable tide (circular galactic orbit will do)
- · Reasonable IMF (e.g. Kroupa)
- · Reasonable binary fraction (a few percent)
- · Any initial model you like (Plummer will do)
- A submitted paper (astro-ph will do)

An inducement: a bottle of single malt Scotch whisky worth €50

What about black holes? Black Hole Binaries?

Post-Newtonian Dynamics

r;v : relative distance, velocity ; $\mu = m_1 m_2/M$: reduced mass ($M = m_1 + m_2$) $\nu = \mu / M$: mass ratio; $\mathbf{n} = \mathbf{r} / \mathbf{r}$: unit vector in radial direction

$$\frac{dv^{i}}{dt} = -\frac{Gm}{r^{2}} \left[(1+\mathcal{A}) n^{i} + \mathcal{B} v^{i} \right] + \mathcal{O} \left(\frac{1}{c^{8}} \right), \qquad (181)$$

and find [43] that the coefficients A and B are

B

$$\begin{split} \mathcal{A} &= \frac{1}{c^2} \left\{ -\frac{3\dot{r}^2\nu}{2} + v^2 + 3\nu v^2 - \frac{Gm}{r} \left(4 + 2\nu\right) \right\} & \text{Perihel shift} \\ &+ \frac{1}{c^4} \left\{ \frac{15\dot{r}^4\nu}{8} - \frac{45\dot{r}^4\nu^2}{8} - \frac{9\dot{r}^2\nu v^2}{2} + 6\dot{r}^2\nu^2 v^2 + 3\nu v^4 - 4\nu^2 v^4 \\ &+ \frac{Gm}{r} \left(-2\dot{r}^2 - 25\dot{r}^2\nu - 2\dot{r}^2\nu^2 - \frac{13\nu v^2}{2} + 2\nu^2 v^2 \right) + \frac{G^2m^2}{r^2} \left(9 + \frac{87\nu}{4}\right) \right\} \\ &+ \frac{1}{c^5} \left\{ -\frac{24\dot{r}\nu v^2}{5} \frac{Gm}{r} - \frac{136\dot{r}\nu}{15} \frac{G^2m^2}{r^2} \right\} & \text{Grav. Radiation} \\ &+ \frac{1}{c^4} \left\{ \frac{9\dot{r}^3\nu}{2} + 3\dot{r}^3\nu^2 - \frac{15\dot{r}\nu v^2}{2} - 2\dot{r}\nu^2v^2 + \frac{Gm}{r} \left(2\dot{r} + \frac{41\dot{r}\nu}{2} + 4\dot{r}\nu^2\right) \right\} \\ &+ \frac{1}{c^5} \left\{ \frac{8\nu v^2}{5} \frac{Gm}{r} + \frac{24\nu}{5} \frac{G^2m^2}{r^2} \right\} \end{split}$$

Schäfer, Gauge Theor. Grav. 36, 2223 (2004) Memmesheimer, Gopakumar, Schäfer, Phys. Rev.D 70, 104011 (2004) Blanchet, Luc; Living Reviews 2002, Ilr-2002-3

Gravitational Waves

What happens afterwards? Post-Newton Order "2.5"...

EUROPEAN GRAVITATIONAL OBSERVATORY

(IO)) EGO

VIRGO Detector in Cascina near Pisa, Italy (LIGO USA, KAGRA Japan)

FIG. 1: The multi-band GW astronomy concept. The violet lines are the total sensitivity curves (assuming two Michelson) of three eLISA configurations; from top to bottom N2A1, N2A2, N2A5 (from [III]). The orange lines are the current (dashed) and design (solid) aLIGO sensitivity curves. The lines in different blue flavours represent characteristic amplitude tracks of BHB sources for a realization of the *flat* population model (see main text) seen with S/N> 1 in the N2A2 configuration (highlighted as the thick eLISA middle curve), integrated assuming a five year mission lifetime. The light turquoise lines clustering around 0.01Hz are sources seen in eLISA with S/N< 5 (for clarity, we down-sampled them by a factor of 20 and we removed sources extending to the aLIGO band); the light and dark blue curves crossing to the aLIGO band are sources with S/N> 5 and S/N> 8 respectively in eLISA; the dark blue marks in the upper left corner are other sources with S/N> 8 in eLISA but not crossing to the aLIGO band within the mission lifetime. For comparison, the characteristic amplitude track completed by GW150914 is shown as a black solid line, and the chart at the top of the figure indicates the frequency progression of this particular source in the last 10 years before coalescence. The shaded area at the bottom left marks the expected confusion noise level produced by the same population model (median, 68% and 95% intervals are shown). The waveforms shown are second order post-Newtonian inspirals phenomenologically adjusted with a Lorentzian function to describe the ringdown.

DRAGON II Simulations

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

DRAGON-II Simulations – Paper II using NBODY6++GPU

Arca Sedda et al. 2023abc: MNRAS:

19 models, up to 1 million stars, up to 33% initial hard binaries

Including GR kicks for mergers!

Figure 2. Formation of an IMBH in simulation with N = 120k, $R_{\rm HM} = 1.75$ pc, and $f_b = 0.2$, realization ID 0. Two massive primordial binaries undergo common envelope that eventually lead to the formation of two nearly equal mass BHs ($m_{\rm BH} \sim 95 {\rm M}_{\odot}$) that eventually find each other via a complex series of binary-binary interactions. The binary eventually merge and builds-up an IMBH with mass $m_{\rm IMBH} \simeq 191 {\rm M}_{\odot}$. The color-coded legend is ent colors correspond to different evolutionary stages: main sequence (MS), common envelope (CE), naked main sequence He star (MSHe), Hertzsprung gap (HG), core He burning (cHeb), and black hole (BH).

DRAGON-II Simulations using NBODY6++GPU

$$\left\langle \frac{da}{dt} \right\rangle = -\frac{64}{5} \frac{G^3 m_1 m_2 (m_1 + m_2)}{c^5 a^3 (1 - e^2)^{7/2}} \left(1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right),$$

$$\left\langle \frac{de}{dt} \right\rangle = -\frac{304}{15} \frac{G^3 m_1 m_2 (m_1 + m_2)}{c^5 a^4 (1 - e^2)^{5/2}} \left(1 + \frac{121}{304} e^2 \right).$$

Orbit Averaged Post-Newtonian evolution of semi-major axis a, eccentricity e (Peters & Mathews 1963, Peters 1964)

$$\begin{split} \vec{v}_{\rm GW} &= v_m \hat{e}_{\perp,1} + v_{\perp} (\cos \xi \hat{e}_{\perp,1} + \sin \xi \hat{e}_{\perp,2}) + v_{\parallel} \hat{e}_{\parallel}, \\ v_m &= A \eta^2 \sqrt{1 - 4\eta} (1 + B\eta), \\ v_{\perp} &= \frac{H \eta^2}{1 + q_{\rm BBH}} \left(S_{2,\parallel} - q_{\rm BBH} S_{1,\parallel} \right), \\ v_{\parallel} &= \frac{16 \eta^2}{1 + q_{\rm BBH}} \left[V_{11} + V_A \Xi_{\parallel} + V_B \Xi_{\parallel}^2 + V_C \Xi_{\parallel}^3 \right] \times \\ &\times \left| \vec{S}_{2,\perp} - q_{\rm BBH} \vec{S}_{1,\perp} \right| \cos(\phi_{\Delta} - \phi_1). \end{split}$$

Black Hole Binary Mergers with relativistic kicks including spins

(DRAGON II, Arca Sedda et al. 2023ab, 2024) How DRAGON-II Black Hole Binaries Grav. Wave Emission Could be observed? (DRAGONII Papers, ArcaSedda et al. 2023ab, 2024)

Fig.: ArcaSedda et al. 2023c;

Time Axis: Sesana et al. 2016

Figure 7. Evolution of the binary GW strain as a function of the frequency for all mergers in DRAGON-II simulations, assuming that the sources are located at a redshift z = 0.05. The colormap identifies the binary eccentricity along its orbit. Dotted lines represent sensitivity curves for different detectors, from left to right: LISA, DECIGO, ET, and LIGO.

DRAGON-II Simulations – Paper III using NBODY6++GPU

Arca Sedda et al. 2023ab, 2024: MNRAS

19 models, up to 1 million stars, up to 33% initial hard binaries

Compact Object Mergers Compared with LIGO-Virgo GWTC-3 catalogue (grey symbols)

Mass ratio q vs. primary mass m1; colour code: secondary mass m2

grey shade: neutron star involved red Shade: mass gap

What about spins?

Post-Newtonian Dynamics Spin-Orbit Interaction S / Spin-Spin SS

$$\frac{d\mathbf{v}_{1}}{dt} = \mathbf{A}_{N} + \frac{1}{c^{2}}\mathbf{A}_{1PN} + \frac{1}{c^{3}}\mathbf{A}_{1.5PN} + \frac{1}{c^{4}}[\mathbf{A}_{2PN} + \mathbf{A}_{3.5PN}] + \frac{1}{c^{5}}[\mathbf{A}_{2.5PN} + \mathbf{A}_{2.5PN}] + \mathcal{O}\left(\frac{1}{c^{6}}\right).$$
(5.1)

Faye, Blanchet, Buonanno 2006

$$\begin{split} \mathbf{A}_{\text{S}1.5PN} &= \frac{Gm_2}{r_{12}^3} \left\{ \left[6 \frac{(S_1, n_{12}, \boldsymbol{v}_{12})}{m_1} + 6 \frac{(S_2, n_{12}, \boldsymbol{v}_{12})}{m_2} \right] \mathbf{n}_{12} \\ &+ 3(n_{12}\boldsymbol{v}_{12}) \frac{\mathbf{n}_{12} \times \mathbf{S}_1}{m_1} + 6(n_{12}\boldsymbol{v}_{12}) \frac{\mathbf{n}_{12} \times \mathbf{S}_2}{m_2} \\ &- 3 \frac{\mathbf{v}_{12} \times \mathbf{S}_1}{m_1} - 4 \frac{\mathbf{v}_{12} \times \mathbf{S}_2}{m_2} \right\}. \end{split}$$
(5.3a)

Post-Newtonian Dynamics Gravitational Wave Templates

Brem, Amaro-Seoane, Spurzem, MNRAS 2013

Handle spin-orbit and spin-spin coupling (P.Brem, R. Spurzem, Univ. Heidelberg)

Figure 3.12: Waveform for two objects with a mass ratio of q = 1/10 on an orbit with e = 0.5 and spins $a_{1,x} = 1.0$, $a_{2,y} = 1.0$.

GW Detection Abott et al. 2016

Rezzolla Final Spin Formula

Brem, Amaro-Seoane, Spurzem, MNRAS 2013

$$\begin{aligned} |\mathbf{a}_{\text{fin}}| = & \frac{1}{(1+q)^2} \left[|\mathbf{a}_1|^2 + |\mathbf{a}_2|^2 q^4 + 2|\mathbf{a}_2| |\mathbf{a}_1| q^2 \cos \alpha \right. \\ & + 2(|\mathbf{a}_1| \cos \beta + |\mathbf{a}_2| q^2 \cos \gamma) |\mathbf{l}| q + |\mathbf{l}|^2 q^2 \right]^{1/2}, \end{aligned}$$

where $q = M_2/M_1$ is the mass ratio and the angles are defined as

Figure 3.7: Comparison between the current final spin prediction and the actual total angular momentum of the binary system.

Figure 8. Mass of the runaway body, M_{runaw} , for each setup, averaged over 500 runs. $M_{cl}(T = 0)$ is the total mass of the cluster at the time T = 0 and $T_{rlx}(T = 0)$ the initial relaxation time of the cluster. The shaded area shows the standard deviation for the a = 0 case.

Brem, Amaro-Seoane, Spurzem, MNRAS, 2013

Figure 9. Spin of the runaway body in each simulation, averaged over 500 runs. The shaded area shows the standard deviation for the a = 0 case. All initial spin setups lead to a similar evolution, except for the very first data point which is slightly higher for the maximally spinning initial conditions.

Post-Newtonian Dynamics

Brem, Amaro-Seoane, Spurzem, MNRAS 2013

Include Spin-Orbit Spin-Spin PN3, PN3.5 Spin Dynamics

By Patrick Brem (Diploma Thesis Univ. Heidelberg)

1PN 2PN + 1.5PN SO 3PN + 2.5PN SO 2.5PN + 2PN SS 3.5PN

Introduction, Globular Star Clusters <u>Nuclear Star Clusters</u> Code(s) and Hardware

Setting the stage: the galactic nucleus

Size ~ 10 Kpc Density ~ 0.05 $M_{sun} pc^{-3}$ Vel. Disp. ~ 40 Km/s Relaxation time ~ 10¹⁵ yrs.

Size ~ 10^{-7} - 10^{-4} pc Rs = 2G M_{BH} /c² R_t~(α M_{BH}/m_{*})^{1/3} R_{*} Loss cone aperture: θ

Slide: Miguel Preto

Distribution of stars

Model: Panamarev, Just, Spurzem, Berczik, Wang, Arca Sedda 2019, MNRAS "DRAGON" of Galactic Center (one million bodies. SMBH. 1% hard binaries)

Stars moving Around the Central black Hole in our Galaxy

Max-Planck Inst. Extraterrestrische Physik Garching http://www.mpe.mpg.de/ir/GC/

Black Holes in Galaxies

DRAGON I Galactic Center Simulations

Initial Data:

1 million stars 10% fixed SMBH mass Zero age pop, 0.8 – 100 Spherical

Density Profiles of stars and *-mass Black Holes in the Galactic Center after 5 Gyr

Extremely simple <u>"accretion radius"</u>

For ALL objects.

FIGURE 4.3: Stellar density profiles at t = 5 Gyr for different stellar types. Thick solid lines correspond to: All - all stars, MS_{low} - low mass main sequence stars, MS - main sequence, RG - red giants, WD white dwarfs, BH - black holes. Corresponding power-law slopes fitted inside the initial and final influence radii of the SMBH are shown as dash-dotted and dotted lines of the same colour. The dashed vertical lines denote the initial influence radius (r = 1.4pc) and the influence radius at t = 5Gyr ($r \sim 2.8pc$) of the SMBH. The power-law indices fitted inside r = 1.4pc are shown in the legend.

Panamarev, Just, Spurzem, et al. 2019 Panamarev, ..., Just, Spurzem, 2018, MNRAS Galaxies merge, hierarchical Structure formation, their centres? Black Holes?

5 orcsec

Komossa et al.

Colliding Galaxies NGC 4038 and NGC 4039 HST • WFPC2 PRC97-34a • ST Scl OPO • October 21, 1997 • B, Whitmore (ST Scl) and NASA

Galaxies merge, hierarchical Structure formation, their centres? Black Holes?

Simulations of Binary Black Holes

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Black Holes in Dense Stellar Clusters: N-Body Problem with General Relativity (Post-Newtonian)

Two (un-)equal-mass black holes in central core of simplified galaxy (up to 6 million particles)

Slide: Peter Berczik

 \bigcirc

a = 0.6

Simulations with stars and dark matter, <u>Khan et al. 2012</u>

stars

Box Size 4 kpc

time

M. Sobolenko, P. Berczik, R. Spurzem, G. Kupi, 2017;

M. Sobolenko, O. Kompaniiets, P. Berczik, V. Marchenko , A. Vasylenko1, E. Fedorova,

B. Shukirgaliyev, 2022: NGC 6240 Supermassive Black Hole Binary dynamical evolution based on Chandra data

FAST COALESCENCE OF POST-NEWTONIAN SUPERMASSIVE BLACK HOLE

$$\mathbf{a}_{NoSpin} = \mathbf{a}_{N} + \frac{1}{c^{2}} \mathbf{a}_{1PN} + \frac{1}{c^{4}} \mathbf{a}_{2PN} + \frac{1}{c^{5}} \mathbf{a}_{2.5PN} + \frac{1}{c^{6}} \mathbf{a}_{3PN} + \frac{1}{c^{7}} \mathbf{a}_{3.5PN} + O\left(\frac{1}{c^{8}}\right), \quad (7)$$

10 M. Sobolenko et al.

Figure 7. Time-frequency representations (top) of the strain data (bottom) for predicted gravitational waveforms of h_+ polarisation from SMBHB merging at NGC 6240 ($D_L = 111.2 \text{ Mpc}$) for the last 50 yr (left) and last 10 yr (right). Major merging is represented by binary component with masses $1.36 \times 10^9 \text{ M}_{\odot}$ and $6.8 \times 10^8 \text{ M}_{\odot}$ and corresponding mass ratio 2:1. The final separation (due to our $\mathcal{P} N$ routine) is 0.75 mpc. The solid vertical line on the left panel indicates the last 10 yr of merging. Dashed vertical lines from left to right indicate binary separation 15, 10 and 5 Schwarzschild radii respectively.

Post-Newtonian Dynamics... and they merge!

Sobolenko et al. 2022, 2017

Introduction, Globular Star Clusters Nuclear Star Clusters Code(s) and Hardware

Code(s) Nbody6++GPU

Nbody6++GPU

https://github.com/nbody6ppgpu (Spurzem & Kamlah 2023, LRCA) The Hermite Scheme: 4th Order on two time points

$$\vec{a}_0 = \sum_j Gm_j \frac{\vec{R}_j}{R_j^3} \ ; \ \vec{a}_0 = \sum_j Gm_j \left[\frac{\vec{V}_j}{R_j^3} - \frac{3(\vec{V}_j \cdot \vec{R}_j)\vec{R}_j}{R_j^5} \right] \, ,$$

$$\begin{split} \vec{x}_p(t) &= \frac{1}{6} (t-t_0)^3 \vec{\dot{a}}_0 + \frac{1}{2} (t-t_0)^2 \vec{a}_0 + (t-t_0) \vec{v} + \vec{x} \ , \\ \vec{v}_p(t) &= \frac{1}{2} (t-t_0)^2 \vec{\dot{a}}_0 + (t-t_0) \vec{a}_0 + \vec{v} \ , \end{split}$$

Repeat Step 1 at t_1 using predicted x, $v \rightarrow a_1$, a_1

Nbody6++GPU

$$\begin{split} &\frac{1}{2}\vec{a}^{(2)} = -3\frac{\vec{a}_0 - \vec{a}_1}{(t - t_0)^2} - \frac{2\vec{\dot{a}}_0 + \vec{\dot{a}}_1}{(t - t_0)} \\ &\frac{1}{6}\vec{a}^{(3)} = 2\frac{\vec{a}_0 - \vec{a}_1}{(t - t_0)^3} - \frac{\vec{\dot{a}}_0 + \vec{\dot{a}}_1}{(t - t_0)^2} \ , \end{split}$$

The Hermite Step Get Higher Derivatives

$$\vec{x}(t) = \vec{x}_p(t) + \frac{1}{24}(t-t_0)^4 \vec{a}_0^{(2)} + \frac{1}{120}(t-t_0)^5 \vec{a}^{(3)} ,$$

$$\vec{v}(t) = \vec{v}_p(t) + \frac{1}{6}(t-t_0)^3 \vec{a}_0^{(2)} + \frac{1}{24}(t-t_0)^4 \vec{a}_0^{(3)} .$$

The Corrector Step – this is not time symmetric! (but can be made so by iteration if desirable)

Nbody6++GPU

Hierarchical Block Time Steps

S.J.Aarseth, S. Mikkola,
J. Hurley, R. Spurzem,
L. Wang, ... (ca. 20.000 lines):
Hierarchical Block Time Steps
Ahmad-Cohen Scheme
Regularisations
4th order Hermite scheme

•NBODY6 (Aarseth 1999)
•NBODY6++ (Spurzem 1999) MPI
•NBODY6++GPU (Wang, Spurzem, Aarseth et al. 2015)

$$\Delta t = \sqrt{\eta rac{|ec{a}| |ec{a}^{(2)}| + |ec{a}|^2}{|ec{a}| |ec{a}^{(3)}| + |ec{a}^{(2)}|^2}}$$

NBODY1 – NBODY7: "The Growth of an Industry" (Aarseth 1999)

	ITS	ACS	KS	HITS	PN	AR	CC	MPI	GPU
Nbody1	\checkmark								
NBODY2	-02	\checkmark		\checkmark					
NBODY3	\checkmark		\checkmark						
NBODY4			\checkmark	\checkmark					
NBODY5	\checkmark	\checkmark	\checkmark						
NBODY6		\checkmark	\checkmark	\checkmark					
NBODY6GPU		\checkmark	\checkmark	\checkmark				\checkmark	
NBODY6++		\checkmark	\checkmark	\checkmark			\checkmark		
NBODY6++GPU	8	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
NBODY7		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark

ITS: Individual time-steps [107]

ACS: Ahmad-Cohen neighbour scheme [109]

KS: KS-regularization of few-body subsystems [104]

HITS: Hermite scheme integration method combined with hierarchical block time-steps [111]

PN: Post-Newtonian [150, 125, 151]

AR: Algorithmic regularization [125]

CC: Classical chain regularization [114]

MPI: Message Passing Interface, multi-node multi-CPU parallelization [139]

GPU: use of GPU acceleration [138] (if also MPI: multi-node many GPU [144])

Berczik, Spurzem, et al., LNCS 2013; Table from: Spurzem, Kamlah 2023, LRCA

NBODY6++GPU: <u>https://github.com/nbody6ppgpu/</u>

Part of https://www.punch4nfdi.de/ PUNCH4NFDI Consortium w. Jülich

Codes

Parallelization Supercomputing GPU Computing

Our own φGRAPE/GPU N-body code

NBODY6++GPU

https://github.com/nbody6ppgpu/Nbody6PPGPU-beijing

Supercomputers

NAOC laohu cluster 64 Kepler K20

Laohu: 2009/2015 (Kepler GPU) 100 Tflop/s 150k cores

New GPUs 5-6 times faster... (see below)

GPU Clusters used:

Kepler Cluster Heidelberg, Germany
(12x Kepler GPU, each ~2400 GPU cores)PHansolo/Obiwan GPU Servers Beijing, China
(4x GTX 2080 GPU, each ~4300 GPU cores)GJUWELS Booster GPU Partition (Ampere A100 GPU)
(936 x 4 Ampere A100 GPU, each ~7000 GPU cores)GRaven GPU Cluster of Max-Planck Computing and Data Facility

Peter Berczik, golowood Cluster Main Astron. Observatory Kiev, Ukraine

MPCDF Garching

eidelberg

German

JUWELS Booster 936 nodes (AMD CPU, 4x Ampere GPU) ~450.000 AMD cores, 25 million NVIDIA Ampere GPU cores ~ 70 Pflop/s SP ~ 44 Pflop/s DP

No. 12 in top500 list, No. 25 in green500 list

Jülich Wizard for European Leadership Science

Copyright: — Forschungszentrum Jülich

LUMI Supercomputer, Kajaani, Finland

Using only Hydroelectric Power and its Heat used for heating buildings.

No. 3 in top500 No. 7 in green500

2.2 million cores 10.000 AMD GPUs

EuroHPC and LUMI consortium:

Finland, Belgium, Czech Republic, Denmark, Estonia, Iceland, Norway, Poland, Sweden, and Switzerland.

Summary and References

<u>Summary Message</u>

Massive Star Clusters:

- Direct N-Body Simulations of star clusters give LIGO/Virgo Sources (are consistent with them, it does not mean all sources are from star clusters)
- Necessary Input: single/binary stellar evolution / relativistic (PN) dynamics
- PN with N>2
- Still very long computing time for few models (in spite of GPU, Lumi, ...)

Monte Carlo Models (MOCCA, Warsaw, M. Giersz, CMC, Northwestern, F. Rasio) needed to get good sweep of parameter space

Nuclear Star Clusters:

- Observable Tidal Disruption Events (TDE)
- Light Curves correspond to dynamics of TDE
- Future Work: relativistic inspirals
- Future Work: pulsars
- Future Work: star disk

the	SILK 业都	ROA	OF A	IN ANCIENT TIMES THERE WAS A BRIDGE BETWEEN CULTURES AND CONTINENTS TODAY THERE IS A PROJECT OF ASTROPHYSICS IN CHINA ON THE MOVE TO BUILD AN INTERNATIONAL BRIDGE FOR COMPUTATIONAL SCIENCE			
HOME	RESEARCH 🗸	PEOPLE 🗸	CONFERENCES 🛩	SEMINARS 🗸	BOARD		
						AAA Login Register 🗟 🛅 🕒 💽 🖬	

Kazakhstan - China - Korea (KCK) becomes Silk Road Conference

Kazakhstan-China-Korea meeting becomes Silk Road Conference

o -

<u>13th Silk Road Conference: Dali, China, June 23-27, 2025 (just after the IAU Symposium Compact Objects</u> and Binaries in Dense Star Clusters to be held in Seoul, Korea, June 16-20, 2025)

14th Silk Road Conference: Samarkand, Uzbekistan, June 2026 (to be confirmed)

Exploring the Frontiers of Dynamical Astronomy with High-Performance Computing, Artificial Intelligence, and Leading-Edge Observational Techniques.

We continue the numbering of these conferences, which started as Korea-China meeting in 2009; later it became Kazakhstan-China-Korea meeting, and due to increasing interest and participation of colleagues from all over central and east Asia we decided now to rename it to Silk Road Conference.

Last Conference: 12th Kazakhstan-China-Korea meeting in Astana, Kazakhstan, May 20-24, 2024

Scientific Organizing Committee

Hyung Mok Lee (Seoul National Univ.) Chair

Rainer Spurzem (Univ. of Heidelberg) Co-Chair

Fred Rasio (Northwestern Univ.)

Di Li (National Astronomical Observatory, Chinese Academy of Sciences)

Michiko Fujii (University of Tokyo)

Sourav Chatterjee (TIFR)

Anna Lisa Varri (Edinburgh Univ.)

Antonio Milone (Padova University)

https://gravity.snu.ac.kr/iaus398/

IAU Symposium 398:

Compact Objects and Binaries in Dense Stellar Systems

June 16-20, 2025

Seoul National University, Seoul, Kore

Local Organizing Committee

Chunglee Kim (Ewha Womans Univ.) Chair

Joohee Lee (Seoul National University) Secretary

Sungsoo S. Kim (Kyunghee Univ.)

Jongsuk Hong (Korea Astronomy and Space Science Institute)

Elahe Khalouei (Seoul National University)

Team & Collaborators as below and further: Francesco Flammini Dotti, Kai Wu, Li Shuo, Zhong Shiyan, Peter Berczik, Manuel Arca Sedda (GSSI), Thorsten Naab (MPA), Mirek Giersz (CAMK) PhD students: Vahid Amiri, Marcelo Vergara, Philip Cho

DRAGON simulations – globular and nuclear star clusters

- DRAGON simulation: PhD thesis Long Wang, KIAA/PKU, awarded for first realistic globular cluster simulation using <u>NBODY6++GPU</u> with one million stars and many binaries (Wang, Spurzem, Aarseth, et al., MNRAS 2016).
- The Dragon-II simulations Paper III. Compact binary mergers in clusters with up to 1 million stars: mass, spin, eccentricity, merger rate and pair instability supernovae rate

(Arca Sedda, M., Kamlah, A. W. H., Spurzem, R., et al.) arXiv e-prints arXiv:2307.04807, Paper II: MNRAS 525, 429 (2023), Paper I: arXiv e-prints arXiv:2307.04805

NBODY6++GPU and more, current state:

• <u>Spurzem, R., Kamlah A.W.H. Direct N-body simulations, in Living Rev. in Comp.</u> <u>Astrophysics 9, id.3 (2023) (NBODY7 see also Banerjee, Sambaran papers)</u>

Direct Nuclear Star Cluster Models with SMBH and TDE:

- **DRAGON simulation of the Galactic Center**, PhD thesis of Taras Panamarev, ARI/ZAH Univ. of Heidelberg (Panamarev, Just, Spurzem, Berczik, Wang, Arca Sedda, MNRAS 2019), simple TDE
- Revisit the Rate of Tidal Disruption Events: The Role of the Partial Tidal Disruption Event (Zhong, S., Li, S., Berczik, P., Spurzem, R.) 933, 96 (2022), TDE improved 1
- Marija Minzburg, Philip Cho: Master Thesises Heidelberg 2023, publication in progress, TDE improved 2 and 3.

Some other papers and collaborators may be mentioned:

- Rizzuto, Naab, Spurzem et al. (2021, 2022) precursor of DRAGON II but no GW kicks, no TDE
- Li, Zhong, Berczik, Spurzem, Chen, Liu (MNRAS 2023 and earlier): merging nuclei with TDE