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Ising Model

Introduction
The Ising model is a simple description of ferromagnetism in two spatial dimensions.

We consider a quadratic mesh with n positions of atoms in each of the x and y directions,
i.e. in total N = n2 atoms. Suppose the atoms are fixed in a lattice and each has spin sα

(corresponding to an elementary magnetic moment; all physical quantities are considered
as numbers here, we skip for brevity dimensional scaling). Quantum mechanics prescribes
that the spin can only be oriented in two directions with respect to some external axis,
which we assume here to be the y-axis. We denote the two cases by sα = 1 (spin parallel
to y-axis) or sα = −1 (anti-parallel). A configuration of our system is given by the set of
spins sα for α = 1, . . . , n2. We denote such a configuration (sometimes also called a “spin
state”) with S or Si; note that there is a very very large number of possible configurations,
so i can be very large. The energy of a configuration S is

H(S) = −B
∑

α

sα − J
∑

〈αβ〉

sαsβ (0.1)

where B denotes a possible external magnetic field. The summation index 〈αβ〉 denotes a
summation over all direct neighbours of an atom (not diagonal, so we just have only four
neighbours in two dimensions). J is a spin-spin coupling constant. Note that M =

∑

α sα is
a (dimensionless) measure of the total magnetic moment of our spin lattice, in the spin state
S. m = M/N is the magnetic moment per atom (to compare measurements of spin lattices
with different size it is useful to normalise them per atom). We use here dimensionless
units for the magnetic moment, for a spin lattice of size n the magnetic moment can just
take any integer number from −N to N (but note it is always −1 ≤ m ≤ 1). We use
periodic boundary conditions, for example the neighbours of the leftmost column of spins
to the left are identical to the rightmost column (and analogously for the uppermost and
lowermost rows).

The expectation value of the magnetization 〈m〉 (total magnetic moment per atom)
for a large number of spin states Si, which are distributed according to a probability
distribution w(Si) is approximated by a Monte Carlo integral (average of spin states with
weight according to w(Si))
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(0.2)

The first sum in the above equation runs over all allowed states of the system, which is
an enormeous number. The second and third sums are running only over a number NS of



sweeps, which you have done in your experiment in order to obtain an ensemble of spin
states. This number is only of the order of a few hundred. So we are substituting the
weighted sum over all states by an average over selected few hundred states obtained by
our Monte Carlo (Ising) model. The spin states obtained by the Ising model obey the
canonical or Gibbs-Boltzmann distribution. The α sum as above is (for one spin state)
the sum over the atom’s spins. Free parameters are here the spin coupling constant J ,
the external magnetic field B, and the temperature T (see below how it enters into the
equations).

The probability distribution function of states of the canonical distribution is according
to statistical thermodynamics

w(Si) =
exp (−βH(Si))

Z
; Z =

∑

i

exp (−βH(Si)) (0.3)

with β = 1/T and the partition function (German: Zustandssumme) Z. The partition
function is generally too complicated to be computed directly, rather we use the Ising model
to compute spin states which obey the probability distribution w(Si), without explicitly
knowing Z. The method is also called a Metropolis algorithm.

Consequently we can compute, as a second observable, the mean energy per atom of
the system as

〈e〉 =
1

N

∑

i

w(Si)H(Si) =
1

NNS

∑

i

H(Si). (0.4)

Our goal is to create by the Ising model a large number NS of states, obeying w(Si).
NS cannot be nearly as large as the real number of possible states (actually it will be much
much smaller); however, we can choose NS large enough that we get sufficiently accurate
informations about the average physical state of the system reliably (magnetisation, en-
ergy). The reason why this is possible lies in the fact that many of the possible states have
a very low probability and contribute very little to the partition function. We focus on
those states which have a higher probability and contribute significantly to the partition
sum.

Programming the Metropolis algorithm
In your numerical program for the Ising model you will do the following steps to reach

the goal as described above:

1. generate an initially random configuration of spins. b = βB and j = βJ and the
Hamiltonian (energy) h = βH are used as dimensionless numerical parameters. Test
your algorithm for example using b = 0.0, 0.2, j = 0.25, 0.6. (Note that in this way
the inverse temperature β does not occur explicitly in the equations; but we vary the
temperature by varying the dimensionless parameter j, since the original parameter
J has a constant physical value).

2. For every atom proceed with the following procedure:

• Choose randomly a new spin for the atom.

• Is it the same as before, proceed to the next atom.

• Is it different than the spin was before, compute the energy difference ∆E
(use Hamiltonian) between the old and new configuration. Is ∆E < 0, the



new configuration has a higher probability than the old one, and is accepted.
Is ∆E > 0 the new configuration will only be accepted with a probability
q = exp(−β∆E) = exp(−∆h). Note that q is the ratio of w(S) for the new and
old state. You check acceptance by comparing with a random number out of
the interval 0,1.

3. Once you have done this procedure for all atoms, you have created a new spin state Si

(we also say you have done a “Sweep”). Compute its energy and magnetic moment,
and save it. It will be used to compute the sums in (0.2) and (0.4) later.

4. After you have done a sufficient number of sweeps compute the expectation values for
the magnetisation and energy per atom. Whether the number of sweeps is sufficient
can be estimated from the variation of the final result if adding more sweeps.

5. At the beginning you should do several sweeps (about a hundred), whose measure-
ments are not used for the sums, in order to start with a sufficiently relaxed (ther-
malised) configuration, which does not depend anymore from the initial state.

Ising Model Home Work

• Ising model in the “mean-field” approximation:

mmf = tanh(b + 4jmmf) ; bmf = b + 4jmmf = b + 4j

(

ebmf − e−bmf

ebmf + e−bmf

)

Use j = 0.6 and compute the magnetisation m as a function of the magnetic field b
(hysteresis plot) (6 points).

• Ising model with the Metropolis algorithm (MRRTT algorithm). Compute the mean
energy 〈e〉 and magnetisation 〈m〉 per atom as a function of the magnetic field. Use
a grid length of about 30, i.e. 900 atoms. Test the program for j = 0; in this case the
mean field approximation provides the exact result. Solve the Ising model afterwards
for at least two ither values of j (recommended values j ≤ 0.4 and j ≥ 0.5). Plot the
mean energy and magnetisation per atom as a function of the external magnetic field.
Describe your observations. The high j value corresponds to a small temperature,
we will get ordered (ferromagnetic) states, for the low j value (high temperature) we
expect less order. In fact there exists a critical value for j, at which the transition
between ferromagnetic and non-ferromagnetic state occurs. (14 points)


