Tutorial Introduction to Computational Physics SS2011

Lecturers: Volker Springel \& Rainer Spurzem

Tutors: Lei Liu \& Justus Schneider
Sheet 4 (May 12, 2011)

1 Runge-Kutta-4

- Experiment with the rk4 subroutine of the Numerical Recipes library. You will find a c- or Fortran program on our lecture webpage. The routine rkdumb can also be used.

Solve a simple exponential growth problem:

$$
\begin{equation*}
\dot{N}(t)=\gamma N(t) \tag{1}
\end{equation*}
$$

using rk4, with $\gamma=1$ and $N(0)=1$.

- Investigate the accuracy by comparing it to the analytical solution, and by varying the step size over various orders of magnitude.

2 The Lorenz attractor (homework)

The Lorenz attractor problem is given by the following coupled set of differential equations:

$$
\begin{align*}
\dot{x} & =-\sigma(x-y) \tag{2}\\
\dot{y} & =r x-y-x z \tag{3}\\
\dot{z} & =x y-b z \tag{4}
\end{align*}
$$

As discussed in the lecture, the fixed points are ($0,0,0$) for all r, and (for $r>1$) the points $C_{ \pm}=\left(\pm a_{0}, \pm a_{0}, r-1\right)$ with $a_{0}=\sqrt{b(r-1)}$. For the entire exercise, please use $\sigma=10$ and $b=8 / 3$. The value of r is a free parameter. Solve the differential equations numerically, and plot the results in the $x-z$ plane. Optional: you can also try a full 3-D plot of your produced data with Mathematica or gnuplot.

1. (13 pt) Solve numerically, using rk4, the above coupled set of equations for the values $r=0.7,1.7,15.0,27.0$. Choose the initial conditions in the $x-z$-plane, for $r<1$ in a distance of 1 from $(0,0,0)$, and for $r>1$ in a distance of 1 from either C_{+}or C_{-}. Explain in your own words how the solution approaches the fixed point or diverges from it. What do you conclude for the stability of the fixed point as a function of r ? (We will show next week in the lecture mathematically the stability properties of the fixed points).
2. (7 pt) Determine the sequence z_{k} for $r=27$, where z_{k} is a local maximum in z on the solution curve after k periods. Plot z_{k+1} as a function of z_{k}. When sufficient
points are there, connect the points. The resulting function $z_{k+1}=f\left(z_{k}\right)$ has an intersection with the diagonal $z_{k+1}=z_{k}$. It should be a periodic solution of the original differential equations. In which region is the gradient m of this function $>1,<-1$ or between -1 and +1 ? (Explanation: we will see later that there is no periodic solution if $|m|<1$).
