
Exercises Lecture Computational Physics (Summer 2011)

Lecturers: Volker Springel & Rainer Spurzem

Tutors: Lei Liu & Justus Schneider

Sheet 7 (June 2, 2011)

1 Numerical linear algebra methods

• Consider the following matrix equation:

(

ǫ 1
1 1

)(

x

y

)

=

(

1
0.25

)

(1)

where ǫ is a small number, say, ǫ = 10−6.

– Solve the above system numerically by hand (or write a small program that
does this) using either the Gauß-Jordan method or the Gaußian elimination
and backsubstitution technique (your choice), but without pivoting. Use single
precision, and take ǫ = 10−6 (if you prefer to take double precision, then use
ǫ = 10−12). Check the result by back-substituting (x, y) into the above equation
and checking if you get the correct right-hand-side, i.e. (1, 0.25).

– Do the same, but now with row-wise pivoting. What do you notice, compared to
the previous attempt? How small can you make ǫ without running into precision
problems?

• Solve the above equations using the Numerical Recipes routines ludcmp and lubksb

(or equivalent subroutines for LU-decomposition and back-substitution from a library
of your choice, e.g. the routine gsl linalg LU decomp from GSL, the GNU Scientific
Library), and check if the same results are obtained.

• Now calculate the determinant of the matrix













3 2 −2 −3 3
1.5 1.5 −1.2 2.5 3.5
12 8.125 −8.55 −8 9.5
−6 −5 3.9 5 −11.5
0.75 0.6 −0.29 6.55 7.65













(2)

To this end, use the LU decomposition provided by the numerical library you em-
ployed for the previous point.

1



2 Tridiagonal matrices (homework)

Consider the following tridiagonal matrix equation:























b1 c1 0 0 · · · 0 0 0 0
a2 b2 c2 0 · · · 0 0 0 0
0 a3 b3 c3 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · an−2 bn−2 cn−2 0
0 0 0 0 · · · 0 an−1 bn−1 cn−1

0 0 0 0 · · · 0 0 an bn













































x1

x2

x3

...
xn−2

xn−1

xn























=























r1
r2
r3
...

rn−2

rn−1

rn























(3)

1. (3 pt) Derive the iterative expressions for Gaußian elimination, in a form that can
be directly implemented as a numerical subroutine. Do not apply pivoting here1.

2. (3 pt) Derive the iterative expressions for backward substitution, also for implemen-
tation as a numerical subroutine.

3. (10 pt) Program a subroutine that, given the values a2 · · · an, b1 · · · bn, c1 · · · cn−1 and
r1 · · · rn, finds the solution vector given by x1 · · · xn.

4. (2 pt) Take n = 15, and set all a values to -1, all b values to 2, all c values to -1 and
all r values to 0.2. What is the solution for the x1 · · · xn?

5. (2 pt) Put your solution x1 · · · xn back into the original matrix equation (Eq.3) and
find how much the result deviates from the original right-hand-side r1 · · · rn. Is this
satisfactory?

1It turns out that, in the special case of tridiagonal matrix equations pivoting is rarely necessary in

practice; so we’re lucky this time.

2


