Exercises Lecture Computational Physics (Summer 2011)

Lecturers: Volker Springel & Rainer Spurzem Tutors: Lei Liu & Justus Schneider Sheet 7 (June 2, 2011)

1 Numerical linear algebra methods

• Consider the following matrix equation:

$$\begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0.25 \end{pmatrix} \tag{1}$$

where ϵ is a small number, say, $\epsilon = 10^{-6}$.

- Solve the above system numerically by hand (or write a small program that does this) using either the Gauß-Jordan method or the Gaußian elimination and backsubstitution technique (your choice), but without pivoting. Use single precision, and take $\epsilon = 10^{-6}$ (if you prefer to take double precision, then use $\epsilon = 10^{-12}$). Check the result by back-substituting (x, y) into the above equation and checking if you get the correct right-hand-side, i.e. (1, 0.25).
- Do the same, but now with row-wise pivoting. What do you notice, compared to the previous attempt? How small can you make ϵ without running into precision problems?
- Solve the above equations using the Numerical Recipes routines ludcmp and lubksb (or equivalent subroutines for LU-decomposition and back-substitution from a library of your choice, e.g. the routine gsl_linalg_LU_decomp from GSL, the GNU Scientific Library), and check if the same results are obtained.
- Now calculate the determinant of the matrix

$$\begin{pmatrix} 3 & 2 & -2 & -3 & 3\\ 1.5 & 1.5 & -1.2 & 2.5 & 3.5\\ 12 & 8.125 & -8.55 & -8 & 9.5\\ -6 & -5 & 3.9 & 5 & -11.5\\ 0.75 & 0.6 & -0.29 & 6.55 & 7.65 \end{pmatrix}$$
(2)

To this end, use the LU decomposition provided by the numerical library you employed for the previous point.

2 Tridiagonal matrices (homework)

Consider the following tridiagonal matrix equation:

1	b_1	c_1	0	0	•••	0	0	0	0		$\left(\begin{array}{c} x_1 \end{array} \right)$	١	$\left(\begin{array}{c} r_1 \end{array} \right)$)
	a_2	b_2	c_2	0	•••	0	0	0	0		x_2		r_2	
	0	a_3	b_3	c_3	•••	0	0	0	0		x_3		r_3	
	÷	÷	÷	÷		÷	•	÷	:		:	=	:	(3)
	0	0	0	0	• • •	a_{n-2}	b_{n-2}	c_{n-2}	0		x_{n-2}		r_{n-2}	
	0	0	0	0	•••	0	a_{n-1}	b_{n-1}	c_{n-1}		x_{n-1}		r_{n-1}	
	0	0	0	0	• • •	0	0	a_n	b_n)	/	$\left(\begin{array}{c} x_n \end{array} \right)$	/	$\left(\begin{array}{c} r_n \end{array} \right)$	/

- 1. (3 pt) Derive the iterative expressions for Gaußian elimination, in a form that can be directly implemented as a numerical subroutine. Do *not* apply pivoting here¹.
- 2. (3 pt) Derive the iterative expressions for backward substitution, also for implementation as a numerical subroutine.
- 3. (10 pt) Program a subroutine that, given the values $a_2 \cdots a_n$, $b_1 \cdots b_n$, $c_1 \cdots c_{n-1}$ and $r_1 \cdots r_n$, finds the solution vector given by $x_1 \cdots x_n$.
- 4. (2 pt) Take n = 15, and set all *a* values to -1, all *b* values to 2, all *c* values to -1 and all *r* values to 0.2. What is the solution for the $x_1 \cdots x_n$?
- 5. (2 pt) Put your solution $x_1 \cdots x_n$ back into the original matrix equation (Eq.3) and find how much the result deviates from the original right-hand-side $r_1 \cdots r_n$. Is this satisfactory?

¹It turns out that, in the *special case of tridiagonal matrix equations* pivoting is rarely necessary in practice; so we're lucky this time.