Exercises Lecture Computational Physics (Summer 2011)

Lecturers: Volker Springel \& Rainer Spurzem
Tutors: Lei Liu \& Justus Schneider
Sheet 7 (June 2, 2011)

1 Numerical linear algebra methods

- Consider the following matrix equation:

$$
\left(\begin{array}{ll}
\epsilon & 1 \tag{1}\\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{0.25}
$$

where ϵ is a small number, say, $\epsilon=10^{-6}$.

- Solve the above system numerically by hand (or write a small program that does this) using either the Gauß-Jordan method or the Gaußian elimination and backsubstitution technique (your choice), but without pivoting. Use single precision, and take $\epsilon=10^{-6}$ (if you prefer to take double precision, then use $\epsilon=10^{-12}$). Check the result by back-substituting (x, y) into the above equation and checking if you get the correct right-hand-side, i.e. $(1,0.25)$.
- Do the same, but now with row-wise pivoting. What do you notice, compared to the previous attempt? How small can you make ϵ without running into precision problems?
- Solve the above equations using the Numerical Recipes routines ludcmp and lubksb (or equivalent subroutines for LU-decomposition and back-substitution from a library of your choice, e.g. the routine gsl_linalg_LU_decomp from GSL, the GNU Scientific Library), and check if the same results are obtained.
- Now calculate the determinant of the matrix

$$
\left(\begin{array}{ccccc}
3 & 2 & -2 & -3 & 3 \tag{2}\\
1.5 & 1.5 & -1.2 & 2.5 & 3.5 \\
12 & 8.125 & -8.55 & -8 & 9.5 \\
-6 & -5 & 3.9 & 5 & -11.5 \\
0.75 & 0.6 & -0.29 & 6.55 & 7.65
\end{array}\right)
$$

To this end, use the LU decomposition provided by the numerical library you employed for the previous point.

2 Tridiagonal matrices (homework)

Consider the following tridiagonal matrix equation:

$$
\left(\begin{array}{ccccccccc}
b_{1} & c_{1} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \tag{3}\\
a_{2} & b_{2} & c_{2} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a_{n-2} & b_{n-2} & c_{n-2} & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-2} \\
x_{n-1} \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
\vdots \\
r_{n-2} \\
r_{n-1} \\
r_{n}
\end{array}\right)
$$

1. (3 pt) Derive the iterative expressions for Gaußian elimination, in a form that can be directly implemented as a numerical subroutine. Do not apply pivoting here ${ }^{1}$.
2. (3 pt) Derive the iterative expressions for backward substitution, also for implementation as a numerical subroutine.
3. (10 pt) Program a subroutine that, given the values $a_{2} \cdots a_{n}, b_{1} \cdots b_{n}, c_{1} \cdots c_{n-1}$ and $r_{1} \cdots r_{n}$, finds the solution vector given by $x_{1} \cdots x_{n}$.
4. (2 pt) Take $n=15$, and set all a values to -1 , all b values to 2 , all c values to -1 and all r values to 0.2 . What is the solution for the $x_{1} \cdots x_{n}$?
5. (2 pt) Put your solution $x_{1} \cdots x_{n}$ back into the original matrix equation (Eq.3) and find how much the result deviates from the original right-hand-side $r_{1} \cdots r_{n}$. Is this satisfactory?
[^0]
[^0]: ${ }^{1}$ It turns out that, in the special case of tridiagonal matrix equations pivoting is rarely necessary in practice; so we're lucky this time.

