Exercises Lecture Computational Physics (Summer 2011)

Lecturers: Volker Springel \& Rainer Spurzem
Tutors: Lei Liu \& Justus Schneider
Sheet 8 (June 9, 2011)

1 Heat conduction equation

Consider an electricity cable consisting of a metal core of radius $R_{\text {core }}=0.1 \mathrm{~cm}$ surrounded by an insulating plastic mantel of 0.1 cm thickness, making the entire cable $R_{\mathrm{tot}}=0.2 \mathrm{~cm}$ in radius. The metal core produces heat as a result of the electricity flowing through it. The heat production rate in units of Watt per m^{3} is q, which we assume to be a constant inside the metal core, but zero in the insulating mantel.

$$
q(R)=\left\{\begin{array}{ccc}
10^{8} & \text { for } & R \leq R_{\text {core }} \tag{1}\\
0 & \text { for } & R>R_{\text {core }}
\end{array}\right.
$$

The heat conduction flux is given by the following equation:

$$
\begin{equation*}
j(R)=-\kappa \frac{\mathrm{d} T(R)}{\mathrm{d} R} \tag{2}
\end{equation*}
$$

where $T(R)$ is the temperature in Kelvin at radius R, and κ is the conductivity coefficient which we assume to be constant here. We take $\kappa=1 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ for the moment.

Now let us discretize this on an R-grid with:

$$
\begin{equation*}
R_{i}=(i-1 / 2) \times \Delta R \tag{3}
\end{equation*}
$$

for some given constant grid spacing ΔR. The cell centers are at $i=1 \ldots N$, the cell walls are at $i=1 / 2 \ldots N+1 / 2$. This gives N cells and $N+1$ walls (the first wall being at $R=0$).

- Assuming that you want the last cell wall $R_{N+1 / 2}$ to be exactly at R_{tot}, and given some integer value of N, how should you choose ΔR ?
- Write down the analytical form of the steady state conservation equation ${ }^{1}$ for the flux j, with source function q.
- Show that this can be discretized as

$$
\begin{equation*}
\frac{1}{R_{i} \Delta R}\left\{\kappa_{i+1 / 2} R_{i+1 / 2} \frac{T_{i}-T_{i+1}}{\Delta R}-\kappa_{i-1 / 2} R_{i-1 / 2} \frac{T_{i-1}-T_{i}}{\Delta R}\right\}=q_{i} \tag{4}
\end{equation*}
$$

- You can form this into a tridiagonal matrix equation, and solve this using the subroutine you programmed last week. Write out explicit expressions for the a_{i}, b_{i}, c_{i} and r_{i} (where small- r stands for "right-hand-side" while big- R is the coordinate) for $i=2 \ldots N-1$.

[^0]
2 Heat conduction equation continued (Homework)

We now must impose boundary conditions. At $R=0$ we wish to impose

$$
\begin{equation*}
\frac{\mathrm{d} T(R)}{\mathrm{d} R}=0 \quad \text { at } \quad R=0 \tag{5}
\end{equation*}
$$

while at the outer edge we set

$$
\begin{equation*}
T(R)=20 \quad \text { at } \quad R=R_{\mathrm{tot}} \tag{6}
\end{equation*}
$$

1. (5 pt$)$ How can you write the discretized versions of these boundary conditions?
2. (5 pt) How does this translate into the matrix elements $b_{1}, c_{1}, a_{N}, b_{N}$ and right-hand-sides r_{1} and r_{N} ?
3. (5 pt) Write a computer program, using the tridiagonal matrix equation solver you programmed last week ${ }^{2}$, that solves for T_{i} for $i=1 \ldots N$. Plot the results.
4. (5 pt) Now make κ non-constant: Take $\kappa=10$ for $R \leq R_{\text {core }}$ and $\kappa=1$ for $R>R_{\text {core }}$. What changes?
[^1]
[^0]: ${ }^{1}$ Remember that in cylindrical coordinates, with symmetry in ϕ and z, the divergence of a flux \vec{j} is $\nabla \cdot \vec{j}=R^{-1} \mathrm{~d}\left(R j_{R}\right) / \mathrm{d} R$

[^1]: ${ }^{2}$ You can also use the tridag() subroutine from Numerical Recipes, if you prefer that.

