Exercises Lecture Computational Physics (Summer 2011)

Lecturers: Volker Springel & Rainer Spurzem Tutors: Lei Liu & Justus Schneider Sheet 8 (June 9, 2011)

1 Heat conduction equation

Consider an electricity cable consisting of a metal core of radius $R_{\text{core}} = 0.1 \text{ cm}$ surrounded by an insulating plastic mantel of 0.1 cm thickness, making the entire cable $R_{\text{tot}} = 0.2 \text{ cm}$ in radius. The metal core produces heat as a result of the electricity flowing through it. The heat production rate in units of Watt per m³ is q, which we assume to be a constant inside the metal core, but zero in the insulating mantel.

$$q(R) = \begin{cases} 10^8 & \text{for} \quad R \le R_{\text{core}} \\ 0 & \text{for} \quad R > R_{\text{core}} \end{cases}$$
(1)

The heat conduction flux is given by the following equation:

$$j(R) = -\kappa \frac{\mathrm{d}T(R)}{\mathrm{d}R} \tag{2}$$

where T(R) is the temperature in Kelvin at radius R, and κ is the conductivity coefficient which we assume to be constant here. We take $\kappa = 1 \text{ W m}^{-1} \text{ K}^{-1}$ for the moment.

Now let us discretize this on an R-grid with:

$$R_i = (i - 1/2) \times \Delta R \tag{3}$$

for some given constant grid spacing ΔR . The cell centers are at $i = 1 \dots N$, the cell walls are at $i = 1/2 \dots N + 1/2$. This gives N cells and N + 1 walls (the first wall being at R = 0).

- Assuming that you want the last cell wall $R_{N+1/2}$ to be exactly at R_{tot} , and given some integer value of N, how should you choose ΔR ?
- Write down the analytical form of the *steady state* conservation equation¹ for the flux j, with source function q.
- Show that this can be discretized as

$$\frac{1}{R_i \Delta R} \left\{ \kappa_{i+1/2} R_{i+1/2} \frac{T_i - T_{i+1}}{\Delta R} - \kappa_{i-1/2} R_{i-1/2} \frac{T_{i-1} - T_i}{\Delta R} \right\} = q_i \tag{4}$$

• You can form this into a tridiagonal matrix equation, and solve this using the subroutine you programmed last week. Write out explicit expressions for the a_i , b_i , c_i and r_i (where small-r stands for "right-hand-side" while big-R is the coordinate) for $i = 2 \dots N - 1$.

¹Remember that in cylindrical coordinates, with symmetry in ϕ and z, the divergence of a flux \vec{j} is $\nabla \cdot \vec{j} = R^{-1} d(R j_R)/dR$

2 Heat conduction equation continued (Homework)

We now must impose boundary conditions. At R = 0 we wish to impose

$$\frac{\mathrm{d}T(R)}{\mathrm{d}R} = 0 \qquad \text{at} \quad R = 0 \tag{5}$$

while at the outer edge we set

$$T(R) = 20 \qquad \text{at} \quad R = R_{\text{tot}} \tag{6}$$

- 1. (5 pt) How can you write the discretized versions of these boundary conditions?
- 2. (5 pt) How does this translate into the matrix elements b_1 , c_1 , a_N , b_N and right-hand-sides r_1 and r_N ?
- 3. (5 pt) Write a computer program, using the tridiagonal matrix equation solver you programmed last week², that solves for T_i for $i = 1 \dots N$. Plot the results.
- 4. (5 pt) Now make κ non-constant: Take $\kappa = 10$ for $R \leq R_{\text{core}}$ and $\kappa = 1$ for $R > R_{\text{core}}$. What changes?

²You can also use the tridag() subroutine from Numerical Recipes, if you prefer that.