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1 Heat conduction – in parallel

We consider the time-dependent heat condution equation in a two-dimensional periodic
domain [0, L]× [0, L], and for a constant heat conductivity κ:

∂T

∂t
= κ

(

∂2T

∂x2
+

∂2T

∂y2

)

(1)

We want to solve this for an intial value problem, where the initial temperature distribution
is given by

T0(x, y) =

{

4Tm|x+ y − L|, for |x− L/2| < 1/8 and |y − L/2| < 1/8,
0 otherwise

(2)

Strictly speaking, a zero temperature is of course physically dubious; we here adopt it to
stand for an arbitrarily small temperature.

Note that we can redefine our variables in terms of dimensionless quantitites. In par-
ticular, we may express the spatial coordinates in units of L, i.e. x′ = x/L and y = y/L.
Likewise, we can express the temperatures in units of Tm, and the time as t′ = t/(L2/κ).
We can obtain the corresponding equations in these new coordinates by effectively setting
L = κ = Tm = 1 in equations (1) and (2), and that’s what we use in the numerical
implementation.

In the present excercise, we will solve the heat conduction equation through explicit
time integration, using a 2nd order Runge-Kutta scheme. Note that this is not necessarily
the most efficient and most robust approach for this equation, but it is one that we can
easily adapt for parallelization.

We divide the unit square in terms of N ×N cells, and adopt a low-order discretization
of the Laplacian with a 5-point stencil. The evolution equations for the temperatures of
the cells then become a set of coupled ODEs:

dTi,j

dt
= (Ti+1,j + Ti+1,j + Ti+1,j + Ti+1,j − 4Ti,j) (3)

• Verify that these equations are conservative, i.e. that
∑

i
Ti = const holds for the

discretized form of the heat conduction equation.

• On the lecture’s web-site (in the directory that also hold the NR routines), you can
download an implementation in serial code of this time-dependent heat conduction
problem, entitled heat serial.c. Take a close look at this code and check that it
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appears to be reasonable. Run the code and write a plot script that displays the
output of the code, which is the temperature profile across the diagonal of the square
at a different times, overplotted in a single panel.

• Now experiment with the timestep size and verify that the integration becomes un-
stable for ∆t > 0.25h2, where h is the grid spacing. Explain why this happens.

• Repeat the calculation for a couple of mesh resolutions, in particular for N = 50,
N = 100, and N = 200. Measure the execution times. You can, for example, simply
prepand the time command in front of the executable. How long would an execution
with N = 2000 take?

• What is the analytic solution for t → ∞?

2 Parallel heat conduction continued (Homework)

In this homework, you will try out three different parallelization techniques. (Note that
the various code examples we consider will usually refrain from doing proper error checking
on things such as memory allocation or file I/O, for clarity. . . In practice, you should never
omit such checks!)

2.1 OpenMP

Copy the serial implementation into a separate file (say heat omp.c), and make the fol-
lowing modifications to it in order to enable shared-memory parallelization on multi-core
CPUs.

• Add a

#include <omp.h>

statement at the beginning.

• Add a

omp_set_num_threads(2);

printf("max threads = %d\n", omp_get_max_threads());

at the beginning of the main() routine. This will set the number of threads you
can use in parallel OpenMP sections to 2, and it will query this number and print
it for confirmation. You can later change the number of threads by modifying the
argument to the omp set num threads() function call. (An alternative to this is
to set the environment variable OMP NUM THREADS to the desired number of threads
before the code is started.)

• Place a compiler directive in front of the outer loops in the routines add() and
get derivative(), of the form:

#pragma omp parallel for private(j)
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This will parallelize the corresponding loops for parallel execution.

• Compile the code with OpenMP enabled. For the gcc compiler this is done with:

gcc -fopenmp heat_omp.c -o heat_omp

Note that for other compilers the syntax for enabling OpenMP can be different.

(5 pt) When implemented as described above, the OpenMP-parallelized code will have
a serious bug in the function get derivative. Identify this problem, and fix it. (Hint:
think about the local variables in this function).

(5 pt) Then carry out some timing measurements. What speed-up can you realize for
N = 200 when using 2 or 4 threads on a suitable multi-core machine?

2.2 GPU-Parallelization

We now try to parallelize the problem for graphics processing units, which nowadays feature
a large number of powerful multi-stream processors. In fact, they can execute hundreds
to many thousand threads in parallel, with their hardware logic being able to efficiently
schedule even millions of threads.

We shall use the high-level CUDA extension of the C language to program the graphics
card, because of its simplicity. This is however only available on NVIDIA hardware.
The emerging OpenCL standard provides for a similar, but more portable programming
interface.

In the file head cuda.cu, we provide a simple adaption of the serial heat condution code
to the CUDA hardware. The extension .cu indidates that it contains not only plain C-
code, but C-code that is modified with CUDA extensions. The latter will be processed by a
special C-compiler provided by NVIDIA, nvcc, while all the rest of the code is just standard
C-code, so that CUDA-C can be viewed as a superset of standard C. For compilation of the
CUDA code, you would use something like nvcc heat cuda.cu -o heat cuda, yielding
the executable heat cuda. Please ask your tutor in the exercise classes about access to a
GPU-enabled machine. You may however also use your private PC or laptop in case it has
an NVIDIA card (but you may then have to first install the CUDA developer toolkit from
http://developer.nvidia.com/cuda-toolkit-40 together with the developer version of
the graphics card driver).

As you will see, in the example we procided already the following modifications/extensions
of the serial code have been implemented:

• At the beginning of main(), the statements

cudaGetDeviceCount(&i);

if(i == 0)

{

printf("No usable CUDA device found, exiting.\n");

exit(1);

}

have been added. This investigates how many CUDA capable graphics card are on
the system, and if none is found, the program is stopped to avoid confusion later on.
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• Next, we do not allocate our temperature field (field[]) and the three auxiliary
fields the time integration uses (ftemp[], dfdt0[], dfdt1[]), on the host computer
any more. Rather, we allocate them now in the memory of the GPU, via calls to the
cudaMalloc() function. Correspondingly, calls to free() before the program ends
have been converted into cudaFree() calls, where appropriate.

• However, the modified code still allocates memory for a separate copy of the temper-
ature field in the array host field[] on the host computer. This is done to create
space for seting-up the ICs, and to hold the result from the GPU calculation before
outputting it.

• After setting up the initial temperature field in host field[], we transform them to
the CUDA device with a call to cudaMemcpy(). The actual time integration of the
temperature field will then be carried out on the GPU. Because of this, the function
output diagonal() has been extended with a call of cudaMemcpy() that retrieves
the result from the GPU back to the host computer.

• The most important change has been done to the functions add() and get derivative().
They have been augmented with a global prefix, which tells the nvcc compiler
that the corresponding functions are to be compiled as device-code which should be
executed on the GPU, in a massively thread-parallel fashion. In fact, we will spawn
a separate thread for each single element of our 2D-fields. In CUDA, massive armies
of threads are created on the computing device by calling such device-code functions
from the ordinary code. These function calls are done more or less in the standard
C-fashion, except that after the function name and before the list of arguments an
expression in tripple angle brackets is inserted, like this:

function_name<<<blks,thrds>>>(arguments);

The arguments in angle brackets specify the total number of threads that should be
created and which will work on the function in parallel. The threads themselves are
arranged into blocks, with each block containing a certain number of threads. The
threads of a block can be indexed as a 1D list, a 2D grid or a 3D grid. Also, the
blocks can be arranged as a 1D list or a 2D mesh. Which of these arrangements
one uses is to a large extent a question of what is most convenient for the problem
at hand (although some algorithms may also need to communicate between threads,
in which case it is best to have them in the same block). We shall use blocks with
16×16 threads each, and try to cover our temperature field with a 2D-grid of blocks.
The number of required blocks is then calculated as (N+15)/16.

Since the functions get derivative() and add() in principle work only on one
element of the field, they do not need to use for-loops that sweep over the fields any
more. However, the functions need to know on which element they are supposed
to work. They are told this by CUDA-provided variables for the thread and block
index of the current thread, which are stored in the variables threadIdx.x and
blockIdx.x, respectively. And the same for the second dimension we use, given by
threadIdx.y and blockIdx.y.

You will also see that we have nevertheless retained a looping structure in the func-
tions get derivative() and add(), given by the while-constructs. This is done
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to allow the code to still work correctly if the grid of threads that is started would
contain fewer elements than our N ×N fields (this should however not occur in our
example). In this case, we advance the location that a thread works on by the total
number of threads in the x- or y-dimension, respectively, so that a thread does several
elements if needed and the whole matrix is always covered.

(5 pt) Rewrite the code such that also the initial conditions are created on the GPU.
(3 pt) Why does the code use the formula (N+15)/16 to calculate the number of required

thread-blocks? What happens if N cannot be divided by 16, or of N is smaller than 16?
Why are extra threads that are potentially launched not causing any trouble?

(2 pt) Carry out runs with N = 50, N = 100, and N = 200, and compare their
timings to the serial code. You most likely will find a substantial speedup, somewhere
in the range ∼ 5 or so. Note that much larger speedups are possible for problems that
are less dominated by memory traffic than the present example, which features very few
calculations for every data elements accessed in memory.

2.3 Parallelization with MPI (optional material)

As a final approach to parallelization we consider splitting up the data and the compu-
tational work between several computers (or compute cores on the same machine) which
run independent instances of the same code. All communication between these programms
needs to be explicitely built into the algorithm.

At the lecture’s web-site, there is a further version of the heat conduction code in
the routine heat mpi.c. To compile this code, one usually uses a command like mpicc

heat mpi.c -o heat mpi, where mpicc is a special version of the C-compiler that auto-
matically sets the environment correctly to allow use of the Message Passing Interface
(MPI) library. An MPI-program is then started with a command of the form mpirun -np

4 ./heat mpi, where in this example 4 program instances are requested. Note that de-
pending on the system, the mpirun command may sometimes also be called mpiexec, poe,
orterun, etc.

Compared to the serial code, a number of modifications have been made to enable
MPI-parallelization of the code:

• An

#include <mpi.h>

is needed at the beginning of the code. Also, at the beginning of main(), the initial-
ization of MPI is done via the calls

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &ThisTask);

MPI_Comm_size(MPI_COMM_WORLD, &NTask);

The variables NTask and ThisTask inform the code about the total number of MPI
processes, and the rank of the current instance. These are crucial for organizing the
parallel computations and the communication.

5



• We adopt a slab-decomposition of the temperature field, where each MPI process is
taking responsibility for a certain number of rows of the matrix. This is calculated
in the Nrows variable. The variable FirstRow holds the index of the first row that
the current instance takes care of. A difficulty is that the total number of MPI tasks
may not divide the total number of rows (N) evenly. In principle, one may even
pick more MPI tasks than rows, such that some of them are superfluous. In order to
make the code still work in this task, the variable LastTask stores the rank of the
last MPI process that still has something to do.

• The memory allocation for the fields field[], ftemp[], dfdt0[] and dfdt1[] now
only needs to be done for Nrows * N elements. This means that the data will be
distributed in memory.

• The set ics() code and the add() function need to be adjusted such that they only
work on the small number of local rows stores on the current rank.

• The most important modification is in the function get derivative. Here the prob-
lem arises that for the calculation of the derivative of the first row on any given
process, access to data on another process is needed – namely the last row in the
slab of the matrix that is stored on the previous processor. Similarly, this previous
processor wants access to the first row on the current processor. This problem is ad-
dressed with calls of MPI Isend() and MPI Recv(), which exchange data about the
first and last row of the current slab with the previous and next process above and be-
low the current slab. Note that the last used MPI-process has to carefully determine
the index of its last row because it may happen that it takes care of fewer than Nrows

rows. The incoming data from the neigboring processes is stored in two temporary
buffers which can be discarded after the derivative has been computed. An added
difficulty is here that one may easily create deadlocks in this communication pattern,
for example by using normal blocking send-calls instead of the asynchronous version
MPI Isend(). (Even MPI Sendrecv() does not offer a simple safe solution here; this
would still require to let even and odd ranks communicate in opposite order.)

• Finally, the output function output diagonal also requires a few modifications. Be-
cause we want the result (the diagonal of our temperature matrix) to be stored in a
single file that is most robustly written by a single process, we first need to collect
the full diagonal on one of the processes. This is done by a call of the MPI Gather

function. However, because this collects contiguous data from each processor, and
the various pieces of the diagonal we have are not in contiguous form initially, we
first copy them to a small auxiliary buffer, before collecting it all on rank 0 with
MPI Gather. The processor with rank 0 is then writing the file with the result.

Suppose we set N = 50 and run the code on 15 MPI-processors. How many rows
does each processor have to take care of? In the output routine, we allocate space for the
diagonal of the temperature field, reserving room for NTask * Nrows elements. Someone
suggests that it would be simpler to here allocate space for N elements, because this is the
real length of the diagonal which is also output to file. Explain why this would introduce
a bug into the code.
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We may think of another clever optimization: Since LastTask gives the rank of the
last MPI process that holds any data of our temperature field, we may restrict calling the
output routine only to those ranks that hold data, for example by writing

if(ThisTask <= LastTask)

output_diagonal(nr);

Why is this a problem? Explain the circumstances under which this will lead to a hang of
the code.

Interchange the message tags 123 and 456 in the two MPI Recv calls. Will the code still
work?
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