Tutorial Introduction to Computational Physics SS2012

Lecturers: Ralf Klessen \& Rainer Spurzem
Tutors: Jan Rybizki/Tobias Brandt \& Mykola Malygin

Sheet 5 (May 18, 2012)
Return by noon of June 1, 2012, in two weeks time)

1 Mathematica exercises

- Repeat and vary the Mathematica examples in Section 3.2.6 of the lecture notes.
- Use the help function of Mathematica to get information about the functions used.
- Analyse the fixed points and their stability of the limited growth equation (4.6) and the system for two populations (4.10.) (both equations are already given in dimensionless form) - analytically (on paper). Solve the equations "numerically" with Mathematica using the given example in Sect. 3.2.6. as template. Confirm the behaviour of the function near the fixed points.
- Optional additional problem: you may even solve the full gravitational two-body problem with Mathematica. Do this by solving the differential equations for the vector components in 2 dimensions and plot the resulting objects (the orbits). You can even try to solve Schrödinger's equations of the last sheet using Mathematica.

2 The Lorenz attractor (homework)

The Lorenz attractor problem is given by the following coupled set of differential equations:

$$
\begin{align*}
\dot{x} & =-\sigma(x-y) \tag{2.1}\\
\dot{y} & =r x-y-x z \tag{2.2}\\
\dot{z} & =x y-b z \tag{2.3}
\end{align*}
$$

As discussed in the lecture, the fixed points are $(0,0,0)$ for all r, and (for $r>1$) the points $C_{ \pm}=\left(\pm a_{0}, \pm a_{0}, r-1\right)$ with $a_{0}=\sqrt{b(r-1)}$. For the entire exercise, please use $\sigma=10$ and $b=8 / 3$. The value of r can be experimented with. When you create numerical solutions you can make plots in 2-D projection (e.g. in the $x-y$ or $x-z$ plane). You can also try a full 3-D plot with Mathematica or gnuplot.

1. (13 pt) Solve numerically, using rk4, the above coupled set of equations for the values $r=0.5,1.1,1.3456,24$ and 30 . Choose the initial conditions near one of the fixed points: $C_{ \pm}$for $r>1$ and $(0,0,0)$ for $r<1$. Explain the behavior, as much as possible, with the stability properties of the fixed points.
2. (7 pt) Determine the sequence z_{k} for $r=30$ (strange Lorenz attractor), where z_{k} is a local maximum in z on the solution curve after k periods. Plot z_{k+1} as a function of z_{k}. When sufficient points are there one obtains a function $z_{k+1}=f\left(z_{k}\right)$. If there were a periodic solution, then z_{k} should converge to a fixed points (for large enough $k)$. Using this curve you can construct the sequence z_{k} for any initial value without solving the ordinary differential equation (ODE) itself. Explain this method (a simple sketch is sufficient). Do you think that a stable periodic solution is possible?
