8.2. Random Number Transformations

Prepare definition of "probability density function" PDF $p(x)$ $p(x)$ defines relative likelihood to pick x in a sample (can be also used to define likelihood of range using integral)

Go back to simple initial examples:
(i): LGG $0 \leq J_{i} \leq m-1$
(ii): Nomalization $0 \leq N_{i} \leq 1 ; r_{i}=\frac{D_{i}}{(m-1)}$ Prodability Density Function $p(x)=1$

$$
\int_{0} p(x) d x=1
$$

(iii) Nomalization on other interval

$$
0 \leq x_{i} \leq a \lambda_{1} x_{i}=a r_{i}
$$

Equal Probability Densify Function $p(x)=\frac{1}{a}$

$$
\int_{0}^{1} p(x) d x=1
$$

8.2. Transforming protatility dishritution (density) function
Let $p(x)$ be PDF; $d W=p(x) d x$ probutility to fund $x, x+d x$
Nonualiration:

$$
T=\int_{x_{\text {win }}} p(x) d x=\int_{0}^{1} p(x) d x
$$

$p(x)$ is a probability density!
Let $x=x(y)$ be a monotonous function. Ansate:

$$
p(x) d x=p(x(y))\left|\frac{d x}{d y}\right| d y=f(y) d y
$$

Let us start with eq. distr. $p(x)=1: \Rightarrow$

$$
\begin{aligned}
F(y)=\left|\frac{d x}{d y}\right| & \text {; without loss of geveralihf } \\
\frac{d x}{d y}>0: \quad f(y) & =\frac{d x}{d y} \Rightarrow \\
F(y)-F\left(y_{0}\right) & =\int_{y_{0}} \frac{d x}{d y^{\prime}} d y^{\prime}=x-x_{0} \\
& =\int_{y_{0}} f\left(y^{\prime}\right) d y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& F(y)=F\left(y_{0}\right)+x-x_{0} i \\
& F(y)=x \Rightarrow y(x)=F^{-1}(x)
\end{aligned}
$$

F is indehinite inteyral (Stamnfunkhou) F^{-1} is inverse function of F (umbelvoultion)
Example: We want exponentially dishiruntedrovs

$$
\begin{gathered}
p(x) d x=F(y) d y=e^{-y} d y=\frac{d x}{d y} d y \\
\left.=F(y)=F\left(y_{0}\right)+\int_{y_{0}} e^{-y^{\prime}} d y^{\prime}\right)-\left[e^{-y^{\prime}}\right]^{y} y_{0} \\
=F\left(y_{0}\right)-e^{-y}+e^{-y_{0}} \\
=F\left(y_{0}\right)+x-x_{0} \quad \text { Let } x_{0}=y_{0}=0 \\
\Rightarrow e^{-y}=1-x \\
y(x)=-\ln (1-x)
\end{gathered}
$$

Nole: $\quad x=1-e^{-y} ; \frac{d x}{d y}=e^{-y}$

$$
d x=e^{-y} d y!\int
$$

More general:

8.2.4. Rejection Method

What if $F^{-1}(y)$ cannot be computed? Use majovant $\tilde{f}(y) \geq f(y)$

$$
\begin{aligned}
& (p(x) d x=f(y) d y) \text { i then } \\
& \tilde{F}(y)=\tilde{F}\left(y_{0}\right)+\int_{y_{0}} \tilde{f}\left(y^{\prime}\right) d y^{\prime}=x-x_{0} \\
& x_{0}=y_{0}=0 ; p(x) d x=\tilde{f}(y) d y \\
& y=y(x)=\widetilde{F}^{-1}(x)
\end{aligned}
$$

With $x_{i} \in(0,1)$ equally distr.
$Y_{i}=\tilde{F}^{-1}\left(x_{i}\right)$ is distr. ace. to PDF $\tilde{f}(y)$

Next: choose eq. distr.RN $x^{\prime} \in[0, \tilde{f}(y)]$ If $x^{\prime} \leqslant f(y)$ accept. (prol. $\frac{f(y)}{f\left(y^{\prime}\right)}$) If $x^{\prime}>f(y)$ rject
Seq. $x_{0}, x_{1} \quad x_{i}, x_{i+1}, \cdots$
Seq. x_{0}^{\prime}, Rej. $_{x_{2}}^{1}, \ldots x_{i}^{1 R_{i j}^{n}-} x_{i+2}^{1}, \ldots$
$y_{i}^{\prime}=\tilde{F}^{-1}\left(x_{i}^{\prime}\right)$ is distr.acc.to $f(y)$!
Good majorant: $\tilde{f}(y)=\frac{C_{0}}{1+\left(y-y_{m}\right)^{2} / a_{0}^{2}}$
Maximum is at $y=y_{m} ; \tilde{f}\left(y_{m}\right)=C_{0}$ FWHM $=2 a_{0}$

$$
\tilde{F}(y)=a_{0} c_{0} \operatorname{arctg}\left(\frac{y-1 / m}{a_{0}}\right)+\tilde{c}
$$

Let $x_{0}=0, y_{0}=0$

$$
\begin{aligned}
& x=\tilde{F}(y)=a_{0} c_{0} \operatorname{arctg}\left(\frac{y-x_{m}}{g}\right)+\tilde{c} \\
&=\int_{0}^{x} \tilde{f}\left(y^{\prime}\right) d y^{\prime} \\
& x_{0}=\tilde{F}\left(y_{0}\right)=0=a_{0} c_{0} \operatorname{arctg}\left(\frac{-y_{m}}{a_{0}}\right)+\tilde{c} \\
& \Rightarrow \quad \tilde{c}=+a_{0} c_{0} \operatorname{arctg} \frac{z_{m}}{a_{0}} \\
& \Rightarrow y(x)=y_{m}+a_{0} \tan \left(\frac{x}{a_{0} c_{0}}-\operatorname{arctg} x_{0}\right) \\
& y_{i}=y\left(x_{i}\right) \text { distr.ac. } \tilde{f}(y)
\end{aligned}
$$

Box-Muller Algorithm: Gaussian PDF

$$
\begin{aligned}
p\left(x_{1}\right) p\left(x_{2}\right) d x_{1} d x_{2} & =\left(\left(y_{1}\right) f\left(y_{2}\right) d y_{1} d y_{2}\right. \\
=1=1 & =|\operatorname{det}| \mid d y_{1} d y_{2} \\
& =\left|\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}, x_{2}}\right| d y_{1} d y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Claim: } y_{1}=\sqrt{-2 \ln x_{1}} \cos \left(2 \pi x_{2}\right) \\
& y_{2}=\sqrt{-2 \ln x_{1}} \sin \left(2 \pi x_{2}\right) \text { does it: } \\
& y_{1}^{2}+y_{2}^{2}=-2 \ln x_{1} \Rightarrow x_{1}=\exp \left(-\frac{1}{2} y_{1}^{2}-\frac{1}{2} y_{1}^{2}\right)_{1}^{2} \\
& y_{2} / y_{1}=\tan \left(2 \pi x_{2}\right) \Rightarrow x_{2}=\frac{1}{2 \pi} \operatorname{arctg}\left(\frac{y_{2}}{y_{1}}\right) \\
& \operatorname{det} j=\frac{1}{2 \pi}\left(\frac{-\exp (-)}{\left(1+\frac{y_{2}^{2}}{y_{1}^{2}}\right)}-\frac{-\frac{y_{2}^{2}}{y_{1}^{2}} \cdot \exp (--)}{\left(1+\frac{y_{2}^{2}}{y_{1}^{2}}\right)}\right)
\end{aligned}
$$

