9.1. Monte Carlo Jategration
$p(\vec{y})$ PDF for raudoen vectors $\vec{x} \in \mathbb{R}^{n}$ (some average)
<f \rangle_{p} expectation value of f over p

$$
(f\rangle_{p}=\int_{V} f(\vec{x})_{p}(\vec{x}) d \vec{x} ; V=\int_{V} d \vec{x}
$$

In case of equally dishisuled PDF:

$$
p(\bar{x})=\frac{1}{V}=\operatorname{coush} . \quad \int_{v} p\left(x^{y}\right) d x^{y}=1
$$

Tu the following keep to 10^{v} case:

Squared Expectation value (mean square)

$$
\begin{aligned}
& \left\langle f^{2}\right\rangle_{p}=\int_{a}^{b} f^{2}(x) p(x) d x \quad\left(\begin{array}{l}
\text { Second moment }) \\
\begin{array}{c}
\text { r.m.s }=\text { root mean } \\
\text { square }=<\ldots r_{b}^{\prime 2}
\end{array} \\
\hline
\end{array}\right. \\
& \text { ole: }\left\langle\mid f-\left\langle\langle \rangle_{p}\right)^{2}\right\rangle=\int_{a}^{b}\left(f-\left\langle f f_{p}\right)^{2} p h\right) d x
\end{aligned}
$$

[r].m.s.deviation

$$
=\left\langle f^{2}\right\rangle_{p}+\langle f\rangle_{p}^{2}
$$

Variance of f over p :

$$
\sigma^{2}=V_{\text {av }}(f)=\int\left(f-\langle f\rangle_{p}\right)^{2} p(k) d x
$$

Empirical approximation of exp. value dy finite set of random neuters:

$$
\left.\overline{f_{N}}=1 \sum_{N}^{N} f\left(x_{i}\right) \quad \overline{f_{N}^{2}}=1 \sum_{N}^{N} f l_{i}\right)^{2}
$$

$$
\mathcal{N i m}_{i c o} \bar{f}_{N}=\langle f\rangle_{p}^{i=1}
$$

$\overline{f_{N}}$: average of f over interval $\overline{f_{N}^{2}}$: average of f^{2}

They we called empinial mean and second moment.
By lav of large numbers (central limit theorem) many \bar{F}_{N} samples have a Gaussian distribution around the expectation value $\langle f\rangle_{p}$ with vainance

$$
\begin{aligned}
& \langle f\rangle_{p}=\overline{f_{N}} \pm \sigma_{N}(N)^{p} \quad \lim _{N \rightarrow \infty} \overline{f_{N}}=\langle\rho\rangle \\
& \sigma_{N}^{2}=\frac{1}{N-1}\left[\overline{f_{N}^{2}}-{\overline{f_{N}}}^{2}\right] \sim \frac{1}{N}\left(\left\langle f^{2}\right\rangle-\left\langle p^{t}\right\rangle\right)
\end{aligned}
$$

Conclusion:

- Determine $\langle f\rangle_{p}=\int f(x)_{p}(e) d x$ in this way error decreases with $\mathrm{N}^{-1 / 2}$ only! MC worse than other integrators!
- But robust and easy to use, esp. in multi-dimensional case.
Simple Demonstration of Central Limit Theorem:
Rolling Dice: $\quad \overline{f_{N}}=\frac{1}{v} \sum x_{i} \quad 1 \leq x_{i} \leq 6$ One "Sweep". N times rolling dice " Expectation value for average:! 3.5 Many "Sweeps": Distribution of averages

Gaussian Distribution around $\langle f\rangle$
with $\sigma_{N}{ }^{2} \propto \frac{1}{N-1}$

Importance Sampling

$$
\begin{aligned}
\langle f\rangle_{p} & =\int_{a}^{\infty} f(x) p(x) d x ; \text { with } p(x)=\text { cons } 1=\frac{1}{b-a} \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x=: \frac{1}{b-a)} I
\end{aligned}
$$

$(*)$ With $\overline{f_{N}}=\frac{1}{N} \sum_{i=1}^{a N} f\left(x_{i}\right) \quad \begin{aligned} & \text { we can approximate } \\ & (f)_{p}=I /(b-a)\end{aligned}$

$$
(f)_{p}=I /(b-a)
$$

But if $f(x)$ is small tor laze pouts of definition set, equally distributed $2 \mathrm{NV}^{\prime}$'s are inefficient for sampling f

Choose $g(x)$ "near " $\left.A_{X}\right)$:
$I=\int_{a}^{b} \frac{f(x)}{g(x)} g(x) d x$ i choose DV') with
PDF $g(x): 1=\int_{a}^{b} g(x) d x$
Then
(**) $\overline{f_{N}}=\frac{1}{N} \sum \frac{f\left(x_{i}\right)}{\psi\left(x_{i}\right)} \quad$ approximates I with

Example: Method 1: $\overline{A_{V}}=\frac{1}{N} \mathrm{E}^{-x_{i}}$ xi equally chistr.
Method 2: $\bar{F}_{N}=\frac{1}{N} S e^{-x_{1 / 2}} \quad x_{i}$ will PDF cure $e^{-x_{i} / 2}$)
(get with transformation)'

Example: $\quad f(x)=e^{-x}$
Method 1: $\quad \overline{f_{N}}=\frac{1}{N} \sum_{i=1}^{N} e^{-x_{i}} \quad x_{i}$ wop $x_{i} \equiv \equiv 1$
Method 2: $f_{N}=\frac{1}{N} \sum_{i=1}^{N} e^{-\frac{x_{i}}{2}} \quad x_{i} w \cdot \operatorname{PDF}$

Metropolis Algorithm:

$$
\begin{aligned}
& \langle f\rangle_{p}=\int p(x) f(x) d x \\
& f_{N}=\frac{1}{N} \sum_{i=1}^{x_{N}} f\left(x_{i}\right) \quad x_{i} \leftrightarrow p\left(x_{i}\right)
\end{aligned}
$$

Realise phi? as equilibrium function of a Marlooff* process $x \rightarrow x^{\prime}$ probability $W\left(x^{\prime}, x\right)$

* process without memory (no correlation with previous steps), stochastic, Master eq.

Realise eq. dy detailed talance:

$$
W\left(x, x^{\prime}\right) p\left(x^{\prime}\right)=W\left(x^{\prime}, x\right) p(x)
$$

$$
\begin{aligned}
& p\left(x^{\prime}>p\left(x^{\prime}\right)\right. \\
& W\left(x^{\prime}, x\right)<W\left(x, x^{\prime}\right)
\end{aligned}
$$

MRRTT algorithm:

$$
\begin{aligned}
& W\left(x, x^{\prime}\right)=j \theta \min \left(1, \frac{p(x)}{p\left(x^{\prime}\right)}\right) \\
& W(x, x)=j \theta \min \left(1, \frac{p\left(x^{\prime}\right)}{p(x)}\right) \\
& \theta=\theta\left(\delta-\left|x-x^{\prime}\right|\right) \text { Linit }, \gamma=1
\end{aligned}
$$

Start: $R N x_{i}, p\left(x_{i}\right)=x$
Step: RN $x_{i+1}, p\left(x_{i+1}\right)=x^{\prime}$

$$
\left(\begin{array}{l}
f \quad p\left(x^{\prime}\right)>p(x): a c u p t \\
\text { (f } p\left(x^{\prime}\right)<p(x)=R N \tilde{x}_{1} \text { acceptip } \tilde{x}<\frac{p\left(x^{\prime}\right)}{p(x)}
\end{array}\right.
$$

- Do i steps for initialization
- Then N steps dor measurement $C=1 \sum_{N}^{N} f\left(x_{i}\right)$ store $x_{i}, i=1,-N$

$$
f_{N}=1 \sum_{N}^{N} f\left(x_{i}\right)
$$

(This is one sweep)

- Do again N skeps to get new measurement values

$$
\langle f\rangle_{p} \cong \frac{1}{N_{S}} \sum_{\text {swaps }} f_{N}
$$

