9.1.3. Jsing Model

Emit J sing 1900-1998 Gemany/UK/USA Simple model of ferromagnetism \Leftrightarrow spontaneous ordering processes
Extemane
magulic Model: Fe atoms with spin $s_{\alpha}= \pm 11010$ B (method of scaling \rightarrow dimension less number)

Every spin
has a moguetic
moment, also
scaling/-dimensionless:
$m=s_{\alpha}= \pm 1$
We have in exercise $30 \times 30=900$, atoms!
A spin state $S=\left\{s_{1}, \ldots s_{1}\right\}$ describes state of the system; all states $S_{i}, i=1, \cdots N$
There are $\sim 2^{N}$ states $\sim 8 \cdot 10^{270}$ states It is a really crazy amount!
Number of elementary particles in universe:
$\sim 10^{80}$!
Number of Planck times $10^{-49} \mathrm{~s}$ since Big Bang

$$
10^{60!}
$$

Fundamental Ducentities:

- Energy of the System H (Hamilton Function)

$$
H\left(s_{i}\right)=-B \sum_{\alpha} s_{\alpha}-J \bigcup_{\langle\alpha \beta\rangle} s_{\alpha} s_{\beta}
$$

7: spin-spin interaction energy
$j>0$: ferromagnetic, parallel spins upreferred" (smaller energy)"
$B>0$: spins parallel to B uprepered") Special Sum:

$$
\sum_{\langle\alpha \beta\rangle}=\sum \sum_{\alpha} \sum_{4 \text { neigh lues }} s_{\alpha} s_{\beta}
$$

Only Interaction with 4 nearest neighbows!

- Magnetic Moment of the System:

$$
M\left(S_{i}\right)=\sum_{\alpha} S_{\alpha} \quad\binom{\text { remember both spin }}{\text { and man. now. } \pm 1!}
$$

- Energy per spin:

$$
e\left(S_{i}\right)=\frac{1}{N} H\left(S_{i}\right)
$$

- Magnetic moment per spin:

$$
m\left(S_{i}\right)=\frac{1}{N} M\left(S_{i}\right)
$$

Themodynamic Qucontities/Statistica(Mechatu

- grand canouical ensemble (heat bath, not isolated)
- probatility of state S :

$$
\begin{aligned}
& \text { mbatility of state } S:(z)) ; \beta=\frac{1}{k T} \\
& w(s)=\exp (-\beta H(s)) / z ; \beta m e)
\end{aligned}
$$

- partition sum (Fustendssumme)

$$
Z=\sum_{S_{i}} \exp \left(-\beta H\left(S_{i}\right)\right) \quad \frac{2 \text { sumumuds }}{\log =\ln =\log }
$$

- Free Eurgy $F=-k T \log z=-\frac{1}{\beta} \log z$
- Iutemal Energy $U=K T^{2} \frac{\partial \log z}{\partial T}=-\frac{\partial \log z}{\partial \beta}$
- Mean Maynetization $M=-\frac{\partial F}{\partial B}=\frac{1}{\beta} \frac{\partial}{\partial B} \log z$

Compute M and U :

$$
\begin{aligned}
& M=\frac{1}{\beta z} \frac{\partial}{\partial \beta} \sum_{s_{i}} \exp \left(-\beta H\left(s_{i}\right)\right) \\
&=\frac{1}{z} \quad \sum_{s_{i}}\left(\sum_{\alpha=1}^{N} s_{\alpha}\right) \exp \left(-\beta H\left(s_{i}\right)\right) \\
&=\sum_{s_{i}} w\left(S_{i}\right) M_{i} \quad \text { with } M_{i}=\left(\sum_{\alpha=1}^{N} s_{\alpha}\right)_{i} V \\
& U=-\frac{1}{z} \frac{\partial}{\partial \beta} z=-\frac{1}{z} \frac{\partial}{\partial \beta} S_{i} \exp \left(-\beta H\left(s_{i}\right)\right) \\
&=\frac{1}{z} \sum_{i} H\left(S_{i}\right) \quad \exp \left(-\beta H\left(s_{i}\right)\right) \\
&=\sum_{S_{i}} W\left(s_{i}\right) H\left(S_{i}\right) \quad \text { with } H\left(s_{i}\right)=U_{i} \\
& \text { internal eenegy of state. }
\end{aligned}
$$

dimensionless values:

$$
\begin{aligned}
& \frac{H}{K T}=\beta H, \quad b=\beta B \quad h=\beta H \quad j=\beta \gamma \\
& h=-b \sum_{\alpha} S_{x}-j \sum_{\alpha(\beta)} S_{\alpha} S_{\beta}
\end{aligned}
$$

Varying in ow experiment:
b: magnetic field
j: temperature (indirect Via $=\frac{Z}{k T}$)
For $j<j_{\text {chit }}$ no order
$j>$ jarit: spontaneous order
Approximate Model (wean field): 'jcrir $=0.25$
Real, ow experiment: jain $=0.4406868 \ldots$

$$
\text { (Onsager } 1944 \sinh \left(2 j_{\text {crit }}\right)=1
$$

$$
\begin{aligned}
& \sinh ^{-1}(1)=\ln (1+\sqrt{2})=2 \text { jorit } \Rightarrow \\
& \sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

Using Model Mean Fld Approx.
First: $J=0$:

$$
\begin{aligned}
w(s)-z & =\exp (-\beta H(s))=\exp \left(+\beta \beta \sum_{\alpha} s_{\alpha}\right) \\
& =\prod_{\alpha} \exp \left(\beta B s_{\alpha}\right) \\
Z & =\sum_{s_{i}} \exp \left(-\beta H\left(s_{i}\right)\right)=\sum_{s_{i}} \prod_{\alpha} \exp \left(\beta s_{\alpha}\right) \\
& =(\exp (\beta B)+\exp (-\beta B))^{N}
\end{aligned}
$$

Proof by induction: $\begin{aligned} & \mathrm{N}=1 \text { : trinal } \\ & \mathrm{N} \rightarrow \mathrm{N}+1 \text { : }\end{aligned}$

$$
\begin{aligned}
z_{N+1}= & \sum_{S_{i, N+1}} \exp \left(-\beta H\left(s_{i}\right)\right)=z_{N} \exp (-\beta \beta) \\
& +Z_{N} \exp (+\beta B) \\
= & (\exp (\beta \beta)+\exp (-\beta \beta))^{N+1}
\end{aligned}
$$

$$
x \quad \text { x }
$$

$$
+x
$$

x

$$
\begin{aligned}
\log z & =N \cdot \log \left(e^{\beta \beta}+e^{-\beta \beta}\right) \\
M_{\text {UHF }}=\frac{1}{\beta} \frac{\partial}{\partial B} \log Z & =N \cdot \frac{e^{\beta B}-e^{-\beta B}}{e^{\beta A}+e^{-\beta B}} \\
& =N \cdot \tanh (\beta \beta)
\end{aligned}
$$

$$
m_{u F}=\tanh (\beta s)
$$

Now assume:

$$
H=-\sum_{\alpha} S_{\alpha}\left(\beta+\gamma \sum_{\alpha \beta} S_{s}\right)=-\beta_{\mu \mu} \int_{\alpha} S_{\alpha}
$$

with $\quad B_{\text {ma }}=B+47\langle s\rangle \Rightarrow m_{m A}=\tanh \left(\beta R_{m_{k}}\right)$

$$
=B+4 y \tanh \left(B S_{m \beta}\right)
$$

dimensionless

$$
b_{\text {mp }}=6+4 j \tanh \left(b_{m R}\right)
$$

For each pair of values b, j we get 1,3 solutions for but (and m max)

Step 1: Find solutions for bumf, hor as functions of b, j :
Case (a):

$$
b=0
$$

4j < 1: only one solution, $b_{m a}=0$

$$
\Rightarrow m_{m p}=0
$$

4j >1 : three solutions $b_{m R}=0,+x,-x$

$$
m_{m f}=0, \tanh (x), \tanh (-x)
$$

spontaneous magnetization!
Case (b): $b>0:-x$ and 0^{n} approach each other $+x \rightarrow \infty$
Case (c):b<0 $+x$ and "0 "approach each other $-x \rightarrow-\infty$
If $b>0$ very large: only one solution $b_{\text {ant }}>0$ $b<0$ very $y_{b>0}$ negative: " " " bumf <0

$$
\begin{aligned}
& b>b_{c r i t} \\
& b<-b_{c v i t}
\end{aligned}
$$

Step 2 :
Collect all results and plot $m_{\text {mF }}$ against b (for some j): Hysteresis (case $j>j$ cont $)$
 solutions for muff

For j<jait: only one curve only one solution for muff

