GPU TECHNOLOGY CONFERENCE

Introduction to CUDA C

San Jose Convention Center | September 20, 2010

Who Am I?

Jason Sanders

- Senior Software Engineer, NVIDIA
- Co-author of CUDA by Example

What is CUDA?

- CUDA Architecture
 - Expose general-purpose GPU computing as first-class capability
 - Retain traditional DirectX/OpenGL graphics performance

CUDA C

- Based on industry-standard C
- A handful of language extensions to allow heterogeneous programs
- Straightforward APIs to manage devices, memory, etc.
- This talk will introduce you to CUDA C

Introduction to CUDA C

- What will you learn today?
 - Start from "Hello, World!"
 - Write and Iaunch CUDA C kernels
 - Manage GPU memory
 - Run parallel kernels in CUDA C
 - Parallel communication and synchronization
 - Race conditions and atomic operations

CUDA C Prerequisites

You (probably) need experience with C or C++

You do not need any GPU experience

- You do not need any graphics experience
- You do not need any parallel programming experience

CUDA C: The Basics

- Terminology
 - Host The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Host

Note: Figure Not to Scale

Hello, World!

```
int main( void ) {
    printf( "Hello, World!\n" );
    return 0;
}
```

- This basic program is just standard C that runs on the host
- NVIDIA's compiler (nvcc) will not complain about CUDA programs with no device code
- At its simplest, CUDA C is just C!

Hello, World! with Device Code

```
_global___ void kernel( void ) {
```

```
int main( void ) {
    kernel<<<1,1>>>();
    printf( "Hello, World!\n" );
    return 0;
```

Two notable additions to the original "Hello, World!"

Hello, World! with Device Code

__global___void kernel(void) {

- CUDA C keyword _____global___ indicates that a function
 - Runs on the device
 - Called from host code
- nvcc splits source file into host and device components
 - NVIDIA's compiler handles device functions like kernel()
 - Standard host compiler handles host functions like main()
 - gcc
 - Microsoft Visual C

Hello, World! with Device Code

```
int main( void ) {
    kernel<<< 1, 1 >>>();
    printf( "Hello, World!\n" );
    return 0;
```

- Triple angle brackets mark a call from *host* code to *device* code
 - Sometimes called a "kernel launch"
 - We'll discuss the parameters inside the angle brackets later
- This is all that's required to execute a function on the GPU!
- The function kernel() does nothing, so this is fairly anticlimactic...

A More Complex Example

• A simple kernel to add two integers:

__global__ void add(int *a, int *b, int *c) {
 *c = *a + *b;
}

As before, __global___ is a CUDA C keyword meaning

- add() will execute on the device
- $_{\rm add()}$ will be called from the host

A More Complex Example

Notice that we use pointers for our variables:

__global___void add(int *a, int *b, int *c) {
 *c = *a + *b;
}

- add() runs on the device...so a, b, and c must point to device memory
- How do we allocate memory on the GPU?

Memory Management

- Host and device memory are distinct entities
 - Device pointers point to GPU memory
 - May be passed to and from host code
 - May not be dereferenced from host code
 - Host pointers point to CPU memory
 - May be passed to and from device code
 - May not be dereferenced from device code

Basic CUDA API for dealing with device memory

- cudaMalloc(), cudaFree(), cudaMemcpy()
- Similar to their C equivalents, malloc(), free(), memcpy()

A More Complex Example: add()

Using our add()kernel:

__global___void add(int *a, int *b, int *c) {
 *c = *a + *b;
}

Let's take a look at main()...

A More Complex Example: main()

int main(void) {

int a, b, c;

// host copies of a, b, c int *dev_a, *dev_b, *dev_c; // device copies of a, b, c int size = sizeof(int); // we need space for an integer

// allocate device copies of a, b, c cudaMalloc((void**)&dev a, size); cudaMalloc((void**)&dev b, size); cudaMalloc((void**)&dev_c, size);

a = 2;b = 7;

A More Complex Example: main() (cont)

// copy inputs to device

cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice); cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters
add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c); return 0;

Parallel Programming in CUDA C

- But wait...GPU computing is about massive parallelism
- So how do we run code in parallel on the device?
- Solution lies in the parameters between the triple angle brackets:

```
add<<< 1, 1 >>>( dev_a, dev_b, dev_c );
add<<< N, 1 >>>( dev_a, dev_b, dev_c );
```

Instead of executing add() once, add() executed N times in parallel

Parallel Programming in CUDA C

- With add() running in parallel...let's do vector addition
- Terminology: Each parallel invocation of add() referred to as a block
- Kernel can refer to its block's index with the variable blockIdx.x
- Each block adds a value from a[] and b[], storing the result in c[]:

__global___void add(int *a, int *b, int *c) { c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

By using blockIdx.x to index arrays, each block handles different indices

Parallel Programming in CUDA C

• We write this code:

__global___void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

This is what runs in parallel on the device:

Block 0	Block 1
c[0] = a[0] + b[0];	c[1] = a[1] + b[1];
Block 2	Block 3
c[2] = a[2] + b[2];	c[3] = a[3] + b[3];

Parallel Addition: add()

Using our newly parallelized add()kernel:

_global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

Let's take a look at main()...

Parallel Addition: main()

```
#define N 512
int main( void ) {
   int *a, *b, *c;
   int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
```

// host copies of a, b, c int size = N * sizeof(int); // we need space for 512 integers

```
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
cudaMalloc( (void**)&dev c, size );
```

a = (int*)malloc(size); b = (int*)malloc(size); c = (int*)malloc(size);

random_ints(a, N); random_ints(b, N);

Parallel Addition: main() (cont)

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N parallel blocks
add<<< N, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

Review

- Difference between "host" and "device"
 - Host = CPU
 - Device = GPU
- Using ___global___ to declare a function as device code
 - Runs on device
 - Called from host
- Passing parameters from host code to a device function

Review (cont)

Basic device memory management

- cudaMalloc()
- cudaMemcpy()
- cudaFree()

Launching parallel kernels

- Launch N copies of add() with: add<<< N, 1 >>>();
- Used blockIdx.x to access block's index

Threads

- Terminology: A block can be split into parallel threads
- Let's change vector addition to use parallel threads instead of parallel blocks:

```
_global__ void add( int *a, int *b, int *c ) {
    c[tbreakIdx.x] = a[tbreakIdx.x] + b[tbreakIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x in add()
- main() will require one change as well...

Parallel Addition (Threads): main()

#define N 512

int main(void) {

int *a, *b, *c; int *dev_a, *dev_b, *dev_c;

int size = N * sizeof(int);

//host copies of a, b, c
//device copies of a, b, c
//we need space for 512 integers

```
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
cudaMalloc( (void**)&dev_c, size );
```

a = (int*)malloc(size); b = (int*)malloc(size); c = (int*)malloc(size);

random_ints(a, N);
random_ints(b, N);

Parallel Addition (Threads): main() (cont)

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N bhoekds
add<<< N, N >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

```
free( a ); free( b ); free( c );
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );
return 0;
```


Using Threads <u>And</u> Blocks

- We've seen parallel vector addition using
 - Many blocks with 1 thread apiece
 - 1 block with many threads
- Let's adapt vector addition to use lots of *both* blocks and threads
- After using threads and blocks together, we'll talk about why threads
- First let's discuss data indexing...

Indexing Arrays With Threads And Blocks

- No longer as simple as just using threadIdx.x or blockIdx.x as indices
- To index array with 1 thread per entry (using 8 threads/block)

If we have M threads/block, a unique array index for each entry given by

Indexing Arrays: Example

- In this example, the red entry would have an index of 21:
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Addition with Threads and Blocks

The blockDim.x is a built-in variable for threads per block: int index= threadIdx.x + blockIdx.x * blockDim.x;

• A combined version of our vector addition kernel to use blocks and threads: __global___ void add(int *a, int *b, int *c) { int index = threadIdx.x + blockIdx.x * blockDim.x; c[index] = a[index] + b[index];

So what changes in main() when we use both blocks and threads?

Parallel Addition (Blocks/Threads): main()

#define N (2048×2048) #define THREADS_PER_BLOCK 512 int main(void) { int *a, *b, *c; int *dev_a, *dev_b, *dev_c; int size = N * sizeof(int); // we need space for N integers

// host copies of a, b, c // device copies of a, b, c

```
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev a, size );
cudaMalloc( (void**)&dev b, size );
cudaMalloc( (void**)&dev_c, size );
```

a = (int*)malloc(size); b = (int*)malloc(size); c = (int*)malloc(size);

random_ints(a, N); random_ints(b, N);

Parallel Addition (Blocks/Threads): main()

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with blocks and threads
add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c); cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c); return 0;

Why Bother With Threads?

- Threads seem unnecessary
 - Added a level of abstraction and complexity
 - What did we gain?

Unlike parallel blocks, parallel threads have mechanisms to

- Communicate
- Synchronize
- Let's see how...

Dot Product

Unlike vector addition, dot product is a *reduction* from vectors to a scalar

$$c = \vec{a} \cdot \vec{b}$$

= $(a_0, a_1, a_2, a_3) \cdot (b_0, b_1, b_2, b_3)$
= $a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$

Dot Product

Parallel threads have no problem computing the pairwise products:

• So we can start a dot product CUDA kernel by doing just that:

_global__ void dot(int *a, int *b, int *c) {
 // Each thread computes a pairwise product
 int temp = a[threadIdx.x] * b[threadIdx.x];

Dot Product

But we need to share data between threads to compute the final sum:

_global__ void dot(int *a, int *b, int *c) {
 // Each thread computes a pairwise product
 int temp = a[threadIdx.x] * b[threadIdx.x];

// Can't compute the final sum
// Each thread's copy of `temp' is private

Sharing Data Between Threads

- Terminology: A block of threads shares memory called...shared memory
- Extremely fast, on-chip memory (user-managed cache)
- Declared with the __shared__ CUDA keyword
- Not visible to threads in other blocks running in parallel

DVIDIA

PRESENTED BY

Parallel Dot Product: dot()

• We perform parallel multiplication, serial addition:

```
#define N 512
__global___void dot( int *a, int *b, int *c ) {
    // Shared memory for results of multiplication
    __shared___ int temp[N];
    temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];
```

```
// Thread 0 sums the pairwise products
if( 0 == threadIdx.x ) {
    int sum = 0;
    for( int i = 0; i < N; i++ )
        sum += temp[i];
    *c = sum;</pre>
```


Parallel Dot Product Recap

- We perform parallel, pairwise multiplications
- Shared memory stores each thread's result
- We sum these pairwise products from a single thread
- Sounds good...but we've made a huge mistake

Faulty Dot Product Exposed!

• Step 1: In parallel, each thread writes a pairwise product

Step 2: Thread 0 reads and sums the products

But there's an assumption hidden in Step 1...

Synchronization

We need threads to wait between the sections of dot():

_global__ void dot(int *a, int *b, int *c) { __shared__ int temp[N]; temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// * NEED THREADS TO SYNCHRONIZE HERE *
// No thread can advance until all threads
// have reached this point in the code

```
// Thread 0 sums the pairwise products
if( 0 == threadIdx.x ) {
    int sum = 0;
    for( int i = 0; i < N; i++ )
        sum += temp[i];
    *c = sum;
}</pre>
```


_syncthreads()

- We can synchronize threads with the function _____syncthreads()
- Threads in the block wait until all threads have hit the _____syncthreads()

Threads are only synchronized within a block

Parallel Dot Product: dot()

```
global___ void dot( int *a, int *b, int *c ) {
    ___shared___ int temp[N];
    temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];
```

```
____syncthreads();
```

```
if( 0 == threadIdx.x ) {
    int sum = 0;
    for( int i = 0; i < N; i++ )
        sum += temp[i];
    *c = sum;
}</pre>
```

With a properly synchronized dot() routine, let's look at main()

Parallel Dot Product: main()

#define N 512

```
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
cudaMalloc( (void**)&dev_c, sizeof( int ) );
```

```
a = (int *)malloc( size );
b = (int *)malloc( size );
c = (int *)malloc( sizeof( int ) );
```

random_ints(a, N); random_ints(b, N);

Parallel Dot Product: main()

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel with 1 block and N threads
dot<<< 1, N >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

```
free( a ); free( b ); free( c );
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );
return 0;
```


Review

Launching kernels with parallel threads

- Launch add() with N threads: add<<< 1, N >>>();
- Used threadIdx.x to access thread's index

Using both blocks and threads

- Used (threadIdx.x + blockIdx.x * blockDim.x) to index input/output
- N/THREADS_PER_BLOCK blocks and THREADS_PER_BLOCK threads gave us N threads total

Review (cont)

- Using ____shared___ to declare memory as shared memory
 - Data shared among threads in a block
 - Not visible to threads in other parallel blocks

Using _____syncthreads() as a barrier

- No thread executes instructions after __syncthreads() until all threads have reached the __syncthreads()
- Needs to be used to prevent *data hazards*

Multiblock Dot Product

Recall our dot product launch:

// launch dot() kernel with 1 block and N threads
dot<<< 1, N >>>(dev_a, dev_b, dev_c);

Launching with one block will not utilize much of the GPU

Let's write a multiblock version of dot product

Multiblock Dot Product: Algorithm

• Each block computes a sum of its pairwise products like before:

Multiblock Dot Product: Algorithm

And then contributes its sum to the final result:

Multiblock Dot Product: dot()

```
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
__global___void dot( int *a, int *b, int *c ) {
    __shared___ int temp[THREADS_PER_BLOCK];
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    temp[threadIdx.x] = a[index] * b[index];
```

```
____syncthreads();
```

```
if( 0 == threadIdx.x ) {
    int sum = 0;
    for( int i = 0; i < THREADS_PER_BLOCK; i++ )
        sum += temp[i];</pre>
```

- But we have a race condition...
- We can fix it with one of CUDA's atomic operations

Race Conditions

- Terminology: A race condition occurs when program behavior depends upon relative timing of two (or more) event sequences
- What actually takes place to execute the line in question: *c += sum;
 - Read value at address ${\bf c}$
 - Add sum to value

- Terminology: Read-Modify-Write
- Write result to address c
- What if two threads are trying to do this at the same time?
 - Thread 0, Block 0
 - Read value at address c
 - Add sum to value
 - Write result to address c

- Thread 0, Block 1
 - Read value at address ${\bf c}$
 - Add **sum** to value
 - Write result to address c

Global Memory Contention

Read-Modify-Write

7

7

Writes 7

Atomic Operations

- Terminology: Read-modify-write uninterruptible when atomic
- Many atomic operations on memory available with CUDA C
 - atomicAdd()
 - atomicSub()

- atomicInc()
- atomicDec()
- atomicMin() atomicExch()
- atomicMax()
- atomicCAS()
- Predictable result when simultaneous access to memory required
- We need to atomically add sum to c in our multiblock dot product

Multiblock Dot Product: dot()

```
_global___ void dot( int *a, int *b, int *c ) {
    ___shared___ int temp[THREADS_PER_BLOCK];
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    temp[threadIdx.x] = a[index] * b[index];
```

```
____syncthreads();
```

```
if( 0 == threadIdx.x ) {
    int sum = 0;
    for( int i = 0; i < THREADS_PER_BLOCK; i++ )
        sum += temp[i];
    atomicAdd( c , sum );
}</pre>
```

Now let's fix up main() to handle a multiblock dot product

Parallel Dot Product: main()

```
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main( void ) {
    int *a, *b, *c;
    int *dev_a, *dev_b, *dev_c;
    int size = N * sizeof( int );
```

```
// host copies of a, b, c
// device copies of a, b, c
// we need space for N ints
```

```
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
cudaMalloc( (void**)&dev_c, sizeof( int ) );
```

```
a = (int *)malloc( size );
b = (int *)malloc( size );
c = (int *)malloc( sizeof( int ) );
```

random_ints(a, N);
random_ints(b, N);

Parallel Dot Product: main()

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice); cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel

dot<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

free(a); free(b); free(c); cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c); return 0;

Review

- Race conditions
 - Behavior depends upon relative timing of multiple event sequences
 - Can occur when an implied read-modify-write is interruptible

Atomic operations

- CUDA provides read-modify-write operations guaranteed to be atomic
- Atomics ensure correct results when multiple threads modify memory

To Learn More CUDA C

- Check out CUDA by Example
 - Parallel Programming in CUDA C
 - Thread Cooperation
 - Constant Memory and Events
 - Texture Memory
 - Graphics Interoperability
 - Atomics
 - Streams
 - CUDA C on Multiple GPUs
 - Other CUDA Resources
- For sale here at GTC

http://developer.nvidia.com/object/cuda-by-example.html

Questions

First my questions

Now your questions...

