
San Jose Convention Center | September 20, 2010

Introduction to CUDA C

Who Am I?

 Jason Sanders

 Senior Software Engineer, NVIDIA

 Co-author of CUDA by Example

What is CUDA?
 CUDA Architecture

— Expose general-purpose GPU computing as first-class capability

— Retain traditional DirectX/OpenGL graphics performance

 CUDA C
— Based on industry-standard C

— A handful of language extensions to allow heterogeneous programs

— Straightforward APIs to manage devices, memory, etc.

 This talk will introduce you to CUDA C

Introduction to CUDA C

What will you learn today?
— Start from “Hello, World!”

— Write and launch CUDA C kernels

— Manage GPU memory

— Run parallel kernels in CUDA C

— Parallel communication and synchronization

— Race conditions and atomic operations

CUDA C Prerequisites

 You (probably) need experience with C or C++

 You do not need any GPU experience

 You do not need any graphics experience

 You do not need any parallel programming experience

CUDA C: The Basics

Host

Note: Figure Not to Scale

 Terminology

 Host – The CPU and its memory (host memory)

 Device – The GPU and its memory (device memory)

Device

Hello, World!

int main(void) {
printf("Hello, World!\n");
return 0;

}

 This basic program is just standard C that runs on the host

 NVIDIA’s compiler (nvcc) will not complain about CUDA programs
with no device code

 At its simplest, CUDA C is just C!

Hello, World! with Device Code
__global__ void kernel(void) {

}

int main(void) {

kernel<<<1,1>>>();

printf("Hello, World!\n");

return 0;

}

 Two notable additions to the original “Hello, World!”

Hello, World! with Device Code
__global__ void kernel(void) {

}

 CUDA C keyword __global__ indicates that a function
— Runs on the device
— Called from host code

 nvcc splits source file into host and device components
— NVIDIA’s compiler handles device functions like kernel()
— Standard host compiler handles host functions like main()

 gcc

 Microsoft Visual C

Hello, World! with Device Code
int main(void) {

kernel<<< 1, 1 >>>();

printf("Hello, World!\n");

return 0;

}

 Triple angle brackets mark a call from host code to device code
— Sometimes called a “kernel launch”

— We’ll discuss the parameters inside the angle brackets later

 This is all that’s required to execute a function on the GPU!

 The function kernel() does nothing, so this is fairly anticlimactic…

A More Complex Example

 A simple kernel to add two integers:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

 As before, __global__ is a CUDA C keyword meaning
— add() will execute on the device

— add() will be called from the host

A More Complex Example

 Notice that we use pointers for our variables:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

 add() runs on the device…so a, b, and c must point to
device memory

 How do we allocate memory on the GPU?

Memory Management
 Host and device memory are distinct entities

— Device pointers point to GPU memory
 May be passed to and from host code

 May not be dereferenced from host code

— Host pointers point to CPU memory
 May be passed to and from device code

 May not be dereferenced from device code

 Basic CUDA API for dealing with device memory
— cudaMalloc(), cudaFree(), cudaMemcpy()

— Similar to their C equivalents, malloc(), free(), memcpy()

A More Complex Example: add()

 Using our add()kernel:

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;
}

 Let’s take a look at main()…

A More Complex Example: main()
int main(void) {

int a, b, c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = sizeof(int); // we need space for an integer

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = 2;

b = 7;

A More Complex Example: main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters

add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Parallel Programming in CUDA C
 But wait…GPU computing is about massive parallelism

 So how do we run code in parallel on the device?

 Solution lies in the parameters between the triple angle brackets:

add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

add<<< N, 1 >>>(dev_a, dev_b, dev_c);

 Instead of executing add() once, add() executed N times in parallel

Parallel Programming in CUDA C
 With add() running in parallel…let’s do vector addition

 Terminology: Each parallel invocation of add() referred to as a block

 Kernel can refer to its block’s index with the variable blockIdx.x

 Each block adds a value from a[] and b[], storing the result in c[]:

__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 By using blockIdx.x to index arrays, each block handles different indices

Parallel Programming in CUDA C

Block 1

c[1] = a[1] + b[1];

 We write this code:
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 This is what runs in parallel on the device:

Block 0

c[0] = a[0] + b[0];

Block 2

c[2] = a[2] + b[2];

Block 3

c[3] = a[3] + b[3];

Parallel Addition: add()

 Using our newly parallelized add()kernel:

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

 Let’s take a look at main()…

Parallel Addition: main()
#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition: main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N parallel blocks

add<<< N, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review
 Difference between “host” and “device”

— Host = CPU

— Device = GPU

 Using __global__ to declare a function as device code
— Runs on device

— Called from host

 Passing parameters from host code to a device function

Review (cont)

 Basic device memory management
— cudaMalloc()

— cudaMemcpy()

— cudaFree()

 Launching parallel kernels
— Launch N copies of add() with: add<<< N, 1 >>>();

— Used blockIdx.x to access block’s index

Threads
 Terminology: A block can be split into parallel threads

 Let’s change vector addition to use parallel threads instead of parallel blocks:

__global__ void add(int *a, int *b, int *c) {

c[] = a[] + b[];

}

 We use threadIdx.x instead of blockIdx.x in add()

 main() will require one change as well…

threadIdx.x threadIdx.x threadIdx.xblockIdx.x blockIdx.x blockIdx.x

Parallel Addition (Threads): main()
#define N 512

int main(void) {

int *a, *b, *c; //host copies of a, b, c

int *dev_a, *dev_b, *dev_c; //device copies of a, b, c

int size = N * sizeof(int); //we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition (Threads): main() (cont)
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N

add<<< >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

threads

1, N

blocks

N, 1

Using Threads And Blocks

 We’ve seen parallel vector addition using
— Many blocks with 1 thread apiece

— 1 block with many threads

 Let’s adapt vector addition to use lots of both blocks and threads

 After using threads and blocks together, we’ll talk about why threads

 First let’s discuss data indexing…

Indexing Arrays With Threads And Blocks
 No longer as simple as just using threadIdx.x or blockIdx.x as indices

 To index array with 1 thread per entry (using 8 threads/block)

 If we have M threads/block, a unique array index for each entry given by

int index = threadIdx.x + blockIdx.x * M;

int index = x + y * width;

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7
threadIdx.x

0 1 2 3 4 5 6 7

Indexing Arrays: Example

 In this example, the red entry would have an index of 21:

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;

= 21;

blockIdx.x = 2

M = 8 threads/block

0 178 16 18 19 20 2121 3 4 5 6 7 109 11 12 13 14 15

Addition with Threads and Blocks
 The blockDim.x is a built-in variable for threads per block:

int index= threadIdx.x + blockIdx.x * blockDim.x;

 A combined version of our vector addition kernel to use blocks and threads:

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

 So what changes in main() when we use both blocks and threads?

Parallel Addition (Blocks/Threads): main()
#define N (2048*2048)

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for N integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, size);

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

random_ints(a, N);

random_ints(b, N);

Parallel Addition (Blocks/Threads): main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with blocks and threads

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Why Bother With Threads?

 Threads seem unnecessary
— Added a level of abstraction and complexity

— What did we gain?

 Unlike parallel blocks, parallel threads have mechanisms to
— Communicate

— Synchronize

 Let’s see how…

Dot Product
 Unlike vector addition, dot product is a reduction from vectors to a scalar

c = a ∙ b
c = (a0, a1, a2, a3) ∙ (b0, b1, b2, b3)

c = a0 b0 + a1 b1 + a2 b2 + a3 b3

a0

a1

a2

a3

b0

b1

b2

b3

*
*
*
*

+

a b
c

Dot Product
 Parallel threads have no problem computing the pairwise products:

 So we can start a dot product CUDA kernel by doing just that:

__global__ void dot(int *a, int *b, int *c) {
// Each thread computes a pairwise product
int temp = a[threadIdx.x] * b[threadIdx.x];

a0

a1

a2

a3

b0

b1

b2

b3

*
*
*
*

+

a b

Dot Product
 But we need to share data between threads to compute the final sum:

__global__ void dot(int *a, int *b, int *c) {
// Each thread computes a pairwise product
int temp = a[threadIdx.x] * b[threadIdx.x];

// Can’t compute the final sum
// Each thread’s copy of ‘temp’ is private

}

a0

a1

a2

a3

b0

b1

b2

b3

*
*
*
*

+

a b

Sharing Data Between Threads
 Terminology: A block of threads shares memory called…

 Extremely fast, on-chip memory (user-managed cache)

 Declared with the __shared__ CUDA keyword

 Not visible to threads in other blocks running in parallel

shared memory

Shared Memory

Threads
Block 0

Shared Memory

Threads
Block 1

Shared Memory

Threads
Block 2

…

Parallel Dot Product: dot()
 We perform parallel multiplication, serial addition:

#define N 512
__global__ void dot(int *a, int *b, int *c) {

// Shared memory for results of multiplication
__shared__ int temp[N];
temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// Thread 0 sums the pairwise products
if(0 == threadIdx.x) {

int sum = 0;
for(int i = 0; i < N; i++)

sum += temp[i];
*c = sum;

}
}

Parallel Dot Product Recap
 We perform parallel, pairwise multiplications

 Shared memory stores each thread’s result

 We sum these pairwise products from a single thread

 Sounds good…but we’ve made a huge mistake

Faulty Dot Product Exposed!
 Step 1: In parallel, each thread writes a pairwise product

 Step 2: Thread 0 reads and sums the products

 But there’s an assumption hidden in Step 1…

__shared__ int temp

__shared__ int temp

In parallel

Read-Before-Write Hazard
 Suppose thread 0 finishes its write in step 1

 Then thread 0 reads index 12 in step 2

 Before thread 12 writes to index 12 in step 1?
This read returns garbage!

Synchronization
 We need threads to wait between the sections of dot():

__global__ void dot(int *a, int *b, int *c) {
__shared__ int temp[N];
temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

// * NEED THREADS TO SYNCHRONIZE HERE *
// No thread can advance until all threads
// have reached this point in the code

// Thread 0 sums the pairwise products
if(0 == threadIdx.x) {

int sum = 0;
for(int i = 0; i < N; i++)

sum += temp[i];
*c = sum;

}
}

__syncthreads()

 We can synchronize threads with the function __syncthreads()

 Threads in the block wait until all threads have hit the __syncthreads()

 Threads are only synchronized within a block

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4…

Parallel Dot Product: dot()
__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[N];
temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < N; i++)

sum += temp[i];
*c = sum;

}
}

 With a properly synchronized dot() routine, let’s look at main()

Parallel Dot Product: main()
#define N 512

int main(void) {

int *a, *b, *c; // copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for 512 integers

// allocate device copies of a, b, c

cudaMalloc((void**)&dev_a, size);

cudaMalloc((void**)&dev_b, size);

cudaMalloc((void**)&dev_c, sizeof(int));

a = (int *)malloc(size);

b = (int *)malloc(size);

c = (int *)malloc(sizeof(int));

random_ints(a, N);

random_ints(b, N);

Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review

 Launching kernels with parallel threads
— Launch add() with N threads: add<<< 1, N >>>();

— Used threadIdx.x to access thread’s index

 Using both blocks and threads
— Used (threadIdx.x + blockIdx.x * blockDim.x) to index input/output

— N/THREADS_PER_BLOCK blocks and THREADS_PER_BLOCK threads gave us N threads total

Review (cont)

 Using __shared__ to declare memory as shared memory
— Data shared among threads in a block

— Not visible to threads in other parallel blocks

 Using __syncthreads() as a barrier
— No thread executes instructions after __syncthreads() until all

threads have reached the __syncthreads()

— Needs to be used to prevent data hazards

Multiblock Dot Product
 Recall our dot product launch:

// launch dot() kernel with 1 block and N threads

dot<<< 1, N >>>(dev_a, dev_b, dev_c);

 Launching with one block will not utilize much of the GPU

 Let’s write a multiblock version of dot product

Multiblock Dot Product: Algorithm
 Each block computes a sum of its pairwise products like before:

a0

a1

a2

a3

b0

b1

b2

b3

*
*
*
*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*
*
*
*

+

a b

… …

sum

Block 1

Multiblock Dot Product: Algorithm
 And then contributes its sum to the final result:

a0

a1

a2

a3

b0

b1

b2

b3

*
*
*
*

+

a b

… …

sum

Block 0

a512

a513

a514

a515

b512

b513

b514

b515

*
*
*
*

+

a b

… …

sum

Block 1

c

Multiblock Dot Product: dot()
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];

}
}

 But we have a race condition…

 We can fix it with one of CUDA’s atomic operations

*c += sum;atomicAdd(c , sum);

Rainer Spurzem

Rainer Spurzem

Rainer Spurzem
t

Rainer Spurzem
c* = sum

Race Conditions

 Thread 0, Block 1
— Read value at address c
— Add sum to value
— Write result to address c

 Terminology: A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

 What actually takes place to execute the line in question: *c += sum;
— Read value at address c

— Add sum to value

— Write result to address c

 What if two threads are trying to do this at the same time?
 Thread 0, Block 0

— Read value at address c
— Add sum to value
— Write result to address c

Terminology: Read-Modify-Write

Global Memory Contention

0c 3

Block 0
sum = 3

Block 1
sum = 4

Reads 0
0

Computes 0+3
0+3 = 3 3

Writes 3

Reads 3
3

Computes 3+4
3+4 = 7 7

Writes 7

0 3 73

Read-Modify-Write

Read-Modify-Write

*c += sum

Global Memory Contention

0c 0

Block 0
sum = 3

Block 1
sum = 4

Reads 0
0

Computes 0+3
0+3 = 3 3

Writes 3

Reads 0
0

Computes 0+4
0+4 = 4 4

Writes 4

0 0 43

Read-Modify-Write

Read-Modify-Write

*c += sum

Atomic Operations
 Terminology: Read-modify-write uninterruptible when atomic

 Many atomic operations on memory available with CUDA C

 Predictable result when simultaneous access to memory required

 We need to atomically add sum to c in our multiblock dot product

 atomicAdd()

 atomicSub()

 atomicMin()

 atomicMax()

 atomicInc()

 atomicDec()

 atomicExch()

 atomicCAS()

Multiblock Dot Product: dot()
__global__ void dot(int *a, int *b, int *c) {

__shared__ int temp[THREADS_PER_BLOCK];
int index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
int sum = 0;
for(int i = 0; i < THREADS_PER_BLOCK; i++)

sum += temp[i];
atomicAdd(c , sum);

}
}

 Now let’s fix up main() to handle a multiblock dot product

Parallel Dot Product: main()
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
int size = N * sizeof(int); // we need space for N ints

// allocate device copies of a, b, c
cudaMalloc((void**)&dev_a, size);
cudaMalloc((void**)&dev_b, size);
cudaMalloc((void**)&dev_c, sizeof(int));

a = (int *)malloc(size);
b = (int *)malloc(size);
c = (int *)malloc(sizeof(int));

random_ints(a, N);
random_ints(b, N);

Parallel Dot Product: main()
// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch dot() kernel

dot<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, sizeof(int) , cudaMemcpyDeviceToHost);

free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return 0;

}

Review
 Race conditions

— Behavior depends upon relative timing of multiple event sequences

— Can occur when an implied read-modify-write is interruptible

 Atomic operations
— CUDA provides read-modify-write operations guaranteed to be atomic

— Atomics ensure correct results when multiple threads modify memory

To Learn More CUDA C
 Check out CUDA by Example

— Parallel Programming in CUDA C

— Thread Cooperation

— Constant Memory and Events

— Texture Memory

— Graphics Interoperability

— Atomics

— Streams

— CUDA C on Multiple GPUs

— Other CUDA Resources

 For sale here at GTC

 http://developer.nvidia.com/object/cuda-by-example.html

Questions

 First my questions

 Now your questions…

	San Jose Convention Center | September 20, 2010
	Who Am I?
	What is CUDA?
	Introduction to CUDA C
	CUDA C Prerequisites
	CUDA C: The Basics
	Hello, World!
	Hello, World! with Device Code
	Hello, World! with Device Code
	Hello, World! with Device Code
	A More Complex Example
	A More Complex Example
	Memory Management
	A More Complex Example: add()
	A More Complex Example: main()
	A More Complex Example: main() (cont)
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Addition: add()
	Parallel Addition: main()
	Parallel Addition: main() (cont)
	Review
	Review (cont)
	Threads
	Parallel Addition (Threads): main()
	Parallel Addition (Threads): main() (cont)
	Using Threads And Blocks
	Indexing Arrays With Threads And Blocks
	Indexing Arrays: Example
	Addition with Threads and Blocks
	Parallel Addition (Blocks/Threads): main()
	Parallel Addition (Blocks/Threads): main()
	Why Bother With Threads?
	Dot Product
	Dot Product
	Dot Product
	Sharing Data Between Threads
	Parallel Dot Product: dot()
	Parallel Dot Product Recap
	Faulty Dot Product Exposed!
	Read-Before-Write Hazard
	Synchronization
	__syncthreads()
	Parallel Dot Product: dot()
	Parallel Dot Product: main()
	Parallel Dot Product: main()
	Review
	Review (cont)
	Multiblock Dot Product
	Multiblock Dot Product: Algorithm
	Multiblock Dot Product: Algorithm
	Multiblock Dot Product: dot()
	Race Conditions
	Global Memory Contention
	Global Memory Contention
	Atomic Operations
	Multiblock Dot Product: dot()
	Parallel Dot Product: main()
	Parallel Dot Product: main()
	Review
	To Learn More CUDA C
	Questions

