
44
66

Some basic ideasSome basic ideas

Parallel ComputingParallel Computing

Evolution according to
Amdahl's law of the
theoretical speedup of
the execution of a
program in function of
the number of
processors executing it,
for different values of p.
The speedup is limited
by the serial part of the
program. For example,
if 95% of the program
can be parallelized, the
theoretical maximum
speedup using parallel
computing would be 20
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law (Gene Amdahl 1967)

Calculate Amdahl's Law:Calculate Amdahl's Law:
Let X be the part of my program (in terms of computing time) which can be parallelised. Let X be the part of my program (in terms of computing time) which can be parallelised.
The sequential computing time TThe sequential computing time T

seqseq is normalized to unity (1), and can be expressed as: is normalized to unity (1), and can be expressed as:

TTseqseq = 1 = X + (1-X) = 1 = X + (1-X)
The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast
communication):communication):

TTparpar = X/p + (1-X) = X/p + (1-X)
with processor number (core number) p ; with processor number (core number) p ;
Then the speed-up of the program S = TThen the speed-up of the program S = T

seqseq / T / T
parpar : :

S = 1 / (1-X+X/p) ; S = 1 / (1-X+X/p) ;

Note: TNote: Tparpar/T/Tseqseq = 1/S (sometimes also plotted) = 1/S (sometimes also plotted)
Note the limit of S for p>>1 and X~1 is very large: S = 1/(1-X). SNote the limit of S for p>>1 and X~1 is very large: S = 1/(1-X). S ～ ～ p p
With communication overhead:With communication overhead:

TTparpar = X/p + (1-X) + T = X/p + (1-X) + Tcommcomm → → S = 1 / (1-X+X/p+TS = 1 / (1-X+X/p+Tcommcomm))

If TIf Tcommcomm independent of p we have for large p: S = 1 / (1-X + T independent of p we have for large p: S = 1 / (1-X + Tcommcomm) = const.) = const.
If If TTcommcomm = c p = c pkk (k>0) we get: S = 1 / (1-X + c p (k>0) we get: S = 1 / (1-X + c pkk) → 0 for large p!!!) → 0 for large p!!!

Nopt

Parallel code on cluster

Strong and Soft Scaling

 Strong Scaling: Fixed Problem size, increase p
 Soft Scaling: Increase Problem size, increase p
 (constant amount of work per processing element)

Ansatz for Soft Scaling (Tcomm neglected here):
 TTseqseq = p (X + (1-X)) = p (X + (1-X))
 TTparpar = X + p (1-X) = X + p (1-X)
 If X~1: p>>1 :→ If X~1: p>>1 :→ TTseqseq ~ pX ; T ~ pX ; Tpar par ~ X ~ X
 S = TS = Tseqseq/T/Tparpar ~ p ~ p

55
11

ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs .
440 cores
= 704.000
GPU-Cores

Using
Mole-8.5
of
IPE/CAS
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak

55
22

Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU

Roofline Performance Model (LBL)
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity.
Arithmetic Intensity is the ratio of total floating-point operations to total
data movement (bytes).

Roofline Performance Model (LBL): Lorena Barba
Research Group at George Washington University: https://lorenabarba.com/

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

