
66
11

Friday, Feb. 24:Friday, Feb. 24:
Histograms Histograms (from Jason Sanders’ book; see our webpage link)(from Jason Sanders’ book; see our webpage link)

Timing and DebuggingTiming and Debugging
Wrap-Up of CUDAWrap-Up of CUDA

Using Tensor Cores in CUDA (only preview) Using Tensor Cores in CUDA (only preview)

66
22

Final Remarks

Important Note:
If you do some NBODY research in the future, please contact us (tutors or

lecturer); do not use the course code for research it is not fully
performant in some respects (openMP).

Remember for course certificate:
* Output files of small experiments on your lecture account
 (0_hello, 1_add, … , 7-matmul, 8-histo)

* Return two plots, one data file, and a few comments to your tutors
 Deadline? About one week, check with your tutors. Outputs of the 8
Nbody runs on your lecture account (one per team of two enough).

* Notice: Student Queues will close Sunday, Mar 5, 2023
 You may run later, but contact me before:
 spurzem@ari.uni-heidelberg.de

66
33

This Timing API is used in 8_histo/histo.cu !

 CUDA – GNU Debugger – CUDA-gdb
do not forget: nvcc -g -G … before running …
(not possible on kepler, login node has no GPU!)

http://docs.nvidia.com/cuda/cuda-gdb/index.html

Linux Terminal commandline:
nsys (nsys --help)

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

How to use Tensor Cores: Libraries, e.g. cuBLAS, cuDNN
Directly in CUDA C++ (since CUDA 9.0):
#include <mma.h>
using namespace nvcuda;

Tensor Cores are exposed in CUDA 9.0 via a set of functions and types in the
nvcuda::wmma namespace (Warp Matrix Multiply Accumulate)

This is only the inner part of the CUDA kernel, for more see URL above!

Warp size is the number of threads in a
warp, which is a sub-division used in the
hardware imple-mentation to coalesce
memory access and instruction
dispatch.

Exercises (CUDA Lectures in afternoon)

0. hello, device- first kernel call, hello world, GPU properties
1. add - vector addition using one thread in one block only
2. add-index - vector addition using blocks in parallel,
 one thread per block only.
3. add-parallel - vector addition using all blocks and threads in parallel
4. dot - scalar product using shared memory of one block
 only for reduction
5. dot-full - scalar product using shared memory and
 atomic add across blocks
6. dot-perfect - scalar product; fat threads and final reduction on host.
7. matmul - matrix multiplication with tiled access shared memory.
8. histo - histogram using fat threads and atomic add
 on shared and global memory, timing

Wrapping Up 1

Wrapping Up 2

Elements of CUDA C learnt:

threadId.x , blockId.x, blockDim.x, gridDim.x Threads, Blocks
(threadId.y, blockId.y, blockdim.y, gridDim.y (matmul coming with 2D grids)
kernel<<<n,m>>> (...) kernel calls
Kernel<<n,m,size>>(…) kernel call with dyn. alloc. size
kernel<<<dimBlock,dimGrid>>>(…) dim3 variable type (matmul)
__global__ device code
__shared__ shared memory on GPU
cudaMalloc / cudaFree manage global memory of GPU
cudaMemcpy / cudaMemset copy/set to or from memory
cudaGetDeviceProperties get device properties in program
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy CUDA profiling
AtomicAdd (on global or shared mem.) atomic functions

Wrapping Up 3

What we have not yet learnt...

__constant__ constant memory on GPU
__device__ functions device to device
Intrinsic Functions (__device__ type)
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE

__host__ functions host to host
More atomic functions
cudaBindTexture using texture memory
fat threads for 2D and 3D stencils thread coalescence opt.
cudaStreamCreate, cudaStreamDestroy working with CUDA streams
<<<n,m,size,s>>> kernel call with streams s
using Tensor Cores
...

Matrix Multiply: Inspired by Lecture of Wen-mei HwuMatrix Multiply: Inspired by Lecture of Wen-mei Hwu

http://whtresearch.sourceforge.net/example.htmlhttp://whtresearch.sourceforge.net/example.html

On kepler: 7_matmul/On kepler: 7_matmul/

Histo: Chapter in Book of Jason SandersHisto: Chapter in Book of Jason Sanders
https://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS22/cuda/files/cuda-histograms.pdfhttps://wwwstaff.ari.uni-heidelberg.de/spurzem/lehre/WS22/cuda/files/cuda-histograms.pdf

(Link on our webpage)(Link on our webpage)

On kepler: 8_histo/On kepler: 8_histo/

histo.cu (atomic on both shared and global memory)histo.cu (atomic on both shared and global memory)

histo-no-atomic.cu (atomic only on global memory)histo-no-atomic.cu (atomic only on global memory)

Matrix Multiply and HistogramMatrix Multiply and Histogram

 Additional deeper material:

Lectures by Prof. Wen-Mei Hwu Chicago in Berkeley 2012 and
Beijing 2013, see http://iccs.lbl.gov/workshops/tutorials.html
(down on page links to all lecture files, also available on request from
spurzem@nao.cas.cn)

Lecture1: Computational thinking
Lecture2: Parallelism Scalability
Lecture3: Blocking Tiling
Lecture4: Coarsening Tiling
Lecture5: Data Optimization
Lecture6: Input Binning
Lecture7: Input Compaction
Lecture8: Privatization
See also:
http://freevideolectures.com/Course/2880/Advanced-algorithmic-techniques-for-GPUs/1

	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

