Friday, Feb. 24:

HlStog I'alllS (from Jason Sanders’ book; see our webpage link)

Timing and Debugging
Wrap-Up of CUDA

Using Tensor Cores in CUDA (only preview)

Final Remarks

Important Note:

If you do some NBODY research in the future, please contact us (tutors or
lecturer); do not use the course code for research it is not fully
performant in some respects (openMP).

Remember for course certificate:

* Output files of small experiments on your lecture account
(0_hello, 1_add, ... , 7-matmul, 8-histo)

* Return two plots, one data file, and a few comments to your tutors

Deadline? About one week, check with your tutors. Outputs of the 8
Nbody runs on your lecture account (one per team of two enough).

* Notice: Student Queues will close Sunday, Mar 5, 2023
You may run later, but contact me before:
spurzem@ari.uni-heidelberg.de

This Timing APl is used in 8_histo/histo.cu !

Timing with CUDA Event API

int main ()

i CUDA Event API Timer are,

cudakEvent_t start, stop;
float time;

- OS independent
cudabEventCreate (&start);

cudaEventCreate (&stop); - High resolution

- Useful for timing asynchronous calls
cudaEventRecord (start, @);

cudaEventRecord (stop, @); .
cudaEventSynchronize (stop); e=- Ensures kernel execution has completed

cudaEventElapsedTime (&time, start, stop);

cudakEventDestroy (start);
cudakEventDestroy (stop);

printf ("Elapsed time %f sec'n”, time*.0@1);

4 retum 1 Standard CPU timers will not measure the

timing information of the device.

m“:‘}l " Office of Introduction to CUDA Programming - Hemant Shukla 16
- el

Science

CUDA - GNU Debugger - CUDA-gdb

do not forget: nvcc -g -G ... before running ...
(not possible on kepler, login node has no GPU!)

http://docs.nvidia.com/cuda/cuda-gdb/index.html

A DEVELOPER CUDA TOOLKIT DOCUMENTATION Q
nyvinia ZOMNE

CUDA Toolkit v7.5

CUDA-GDB (EDE) - v7.5 (older) - Last updated September 1, 2015 - Send Feedback - B4 E4 03] =2

CUDA-GDB

1. Introduction CUDA-GDB
2. Release MNotes

- 3. Getting Started 1. Introduction

b e b LB BRI This document introduces CUDA-GDB, the NVIDIA® CUDA® debugger for Linux and Mac OS.

=5, Kernel Focus

&= 6. Program Execution 1.1. What is CUDA-GDB?

= 7. Breakpoints & ebugging CUDA applications running on Linux and Mac. CUDA-GDB is an extension to the x86-64
Watchpoints : r. The tool provides developers with a mechanism for debugging CUDA applications running on

&= 8, Inspecting Program State es developers to debug applications without the potential variations introduced by simulation and emulation

&= 9, Event Notifications environments.

= %Eéﬁgigogmﬂ“c Error CUDA-GDB runs on Linux and Mac OS ¥, 32-bit and 64-bit. CUDA-GDB is based on GDB 7.6 on both Linux and Mac 05 X,

b SRR g amEias 1.2. Supported Features
t-12. Advanced Settings CUDA-GDB is designed to present the user with a seamless debugging environment that allows simultaneous debugging of both GPU
A Supported Platforms and CPU code within the same application. Just as programming in CUDA C is an extension to C programming. debugging with
B. Known Issues CUDA-GDE is a natural sion to debugging with GDB. The existing GDE debugging features are inherently present for debugging
the host code, and additional features have been provided to support debugging CUDA device code.

CUDA-GDB supports debugging C/C++ and Fortran CUDA applications. (Fortran debugging support is limited to 64-bit Linux operating
system) All the C++ features supported by the NWVCC compiler can be debugged by CUDA-GDB,

CUDA-GDB allows the user to set breakpoints, to single-step CUDA applications, and also to inspect and modify the memory and
variables of any given thread running on the hardware.

Run Window Help

i Bl #vy0+Qeq | wn » BN 3D e e (4l @ Q
=ji'a'*l;.'«ai:rug_ pxi - i» ¥ = 8 ®-variables % Breakpoints | I CUDA 22 . =\ Modules] B
| ¥ B vectorAdd {D}_[dewce lr_:j-lhTﬂ[ﬁ-}j“{Bre;kpﬁi'nE} - &+ = 2] =

| o - =

» & CUDA Thread (0,0,0) Block (0,0,0)

: % CUDA Thread (1,0,0) Block (0,0,0) |l = | [Qs: - . : =

1 - T >
¥ (% All CUDA Threads v i (0,0,0) | SM 11 | 256 threads of 256 are runt
¥ % Block (0,0,0) [sm: 11] # (0,0,0) | Warp OLane 0 |[€ vectorAdd.cu:36 (0x9a653¢
> & CUDA Thread (0,0,0) [warp: 0 lane: 0] (vectorAdd.cu:36) # (1,0,0) I Warp 0 Lane 1 il_c. vectorAdd.cu:36 (0x9a653(
[§ vectorAdd.cu = O| 8t outline | it Registers &2 # B M ¥ =0
J4 0 WeEL Ll Hlll.ll._l-ull?..lll. TLwglt A, LUIaBL ITwdat "D, Tuvatk ", L0t Jumnc = |) : Ty |
33 { Mame T(0,0,0)B(0,0,0) T(1,0,0)B(0,0,0)
34 int i = blockDim.x * blockIdx.x + threadIdx.x; wiRsS a 4
35 1608
% 36 if (i < numElements) oigl RG 3149824 3149824
37 { i R7 4 4
38 C[1] = A[1] + B[1); W RS 0 1
39
20) } HHET 0 1
N 41 - i R10 1060608 -271911904
e) il R11 0 2
El console 8 ¥ Tasks | [2! Problems | @ Executables| @@ Memory e RE | BB | =t B v 3~ 70

vectorAdd [C/C++ Application] gdb traces - _

0x400300880"}, {name="C" ,value="0x400301000"}, {name="numElements"”,value="588"}], file="../src/vectoraAdy -
d.cu”, fullname="/home/eostroukhov/cuda-workspace/vectorAdd,/src/vectorAdd. cu”, line="36"}

470,340 (gdb)

476,340 157~done, register-values=[{number="15",value="0x0"}]

470,340 (gdb) Linux Terminal commandline:
470,346 158*done,register-values=[{number="15",value="6"}] __
470,340 (gdb) nSys (nsys --help)

Click to zoomdshrink

Technical Blog

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Technical Walkthrough Oct 17,2017 English

Programming Tensor Cores in
CUDA 9

By Jeremy Appleyard and Scott Yolkim

= Discuss (14) f}.‘—] Like

Tags: CUDA, culDMNKM, FP16, Linear Algebra, Mixed Precision, Tensor Cores, Volta

ae® o Q4

L]
-
OIS,

How to use Tensor Cores: Libraries, e.g. cuBLAS, cuDNN
Directly in CUDA C++ (since CUDA 9.0):

#include <mma.h>
using namespace nvcuda;

Tensor Cores are exposed in CUDA 9.0 via a set of functions and types in the
nvcuda::wmma namespace (Warp Matrix Multiply Accumulate)

; (Ldop e the,”‘_d;me?“o”wmm o Warp size is the number of threads in a
ST s Al e warp, which is a sub-division used in the
int aRow = warpM * WMMA_M; . .
e e hardware Iimple-mentation to coalesce
2 . .
int bRow = 1; memory access and instruction
int bCol = warpN * WMMA_N; dispatch.

// Bounds checking

if (aRow < M && aCol < K && bRow < K && bCol < N) {
// Load the 1inputs
wmma: : load_matrix_sync(a_frag, a + aRow + aCol * lda, lda);
wmma : : lLoad_matrix_sync(b_frag, b + bRow + bCol = ldb, 1ldb);

// Perform the matrix multiplication
wmma : :mma_sync(acc_frag, a_frag, b_frag, acc_frag);

}

This is only the inner part of the CUDA kernel, for more see URL above!

=

B~ W

0 N O

WrappingUp 1

Exercises (CUDA Lectures in afternoon)

. hello, device- first kernel call, hello world, GPU properties

. add - vector addition using one thread in one block only
. add-index - vector addition using blocks in parallel,
one thread per block only.
. add-parallel - vector addition using all blocks and threads in parallel

. dot - scalar product using shared memory of one block
only for reduction

. dot-full - scalar product using shared memory and
atomic add across blocks

. dot-perfect - scalar product; fat threads and final reduction on host.

matmul - matrix multiplication with tiled access shared memory.

. histo - histogram using fat threads and atomic add

on shared and global memory, timing

Wrapping Up 2

Elements of CUDA C learnt:

threadld.x , blockld.x, blockDim.x, gridDim.x Threads, Blocks

(threadld.y, blockld.y, blockdim.y, gridDim.y

kernel<<<n,m>>> (... kernel calls
Kernel<<n,m,size>>(...) kernel call with dyn. alloc. size
kernel<<<dimBlock,dimGrid>>>(...)

__global device code

__Shared shared memory on GPU
cudaMalloc /cudaFree manage global memory of GPU
cudaMemcpy / cudaMemset copy/set to or from memory
cudaGetDeviceProperties get device properties in program

cudaEventCreate, cudaEventRecord,

cudaEventSynchronize, cudaEventElapsedTime,

cudaEventDestroy CUDA profiling
AtomicAdd (on global or shared mem.) atomic functions

__constant__
__device
Intr|n3|c Functlons (ewce type)

constant memory on GPU
functions device to device

__host__

More atomic functions

cudaBindTexture

fat threads for 2D and 3D stencils
cudaStreamCreate, cudaStreamDestroy
<<<n,m,size,s>>>

using Tensor Cores

functions host to host

using texture memory
thread coalescence opit.
working with CUDA streams
kernel call with streams s

Histo: Chapter in Book of Jason Sanders
hittpsy/wwwistatf.ari.uni-heidelberg.de/spurzem/lehre/WS22/cuda/files/cuda-histograms.pdf

(Link on our webpage)

On kepler: 8_histo/

histo.cu (atomic on both shared and global memory)

histo-no-atomic.cu (atomic only on global memory)

.. Additional deeper material:

Lectures by Prof. Wen-Mei Hwu Chicago in Berkeley 2012 and
Beljing 2013, see

(down on page links to all lecture files, also available on request from
spurzem@nao.cas.cn)

Lecturel: Computational thinking
Lecture2: Parallelism Scalability
Lecture3: Blocking Tiling
Lecture4: Coarsening Tiling
Lecture5: Data Optimization
Lecture6: Input Binning
Lecture7: Input Compaction
Lecture8: Privatization

See also:

PEKING UNIVERSITY

	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

