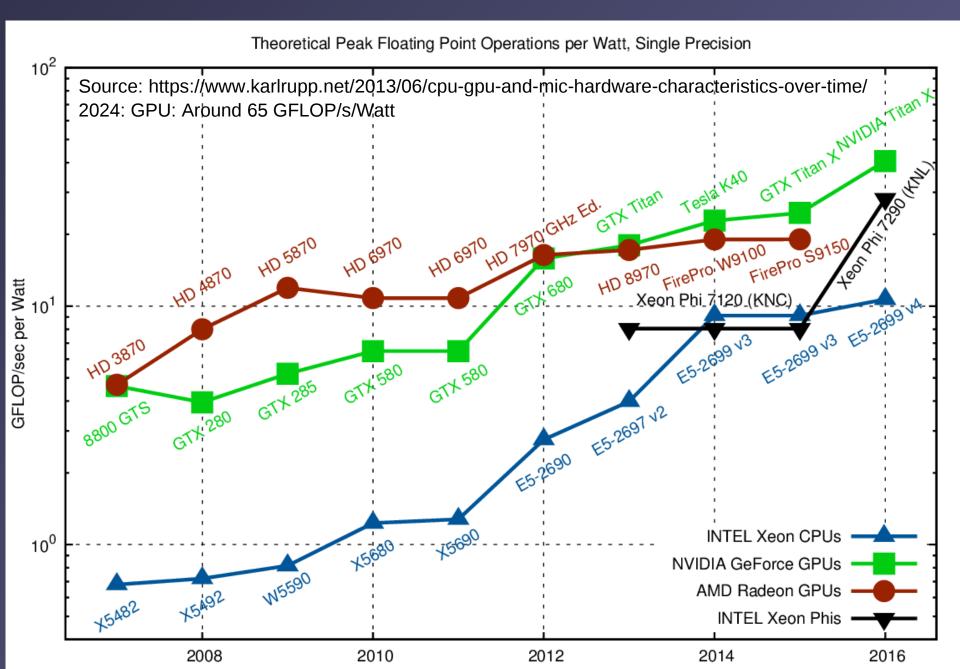
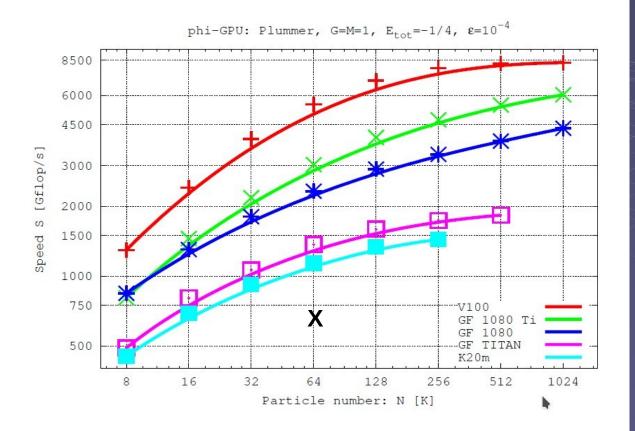

GPU Computing


More on GPU

Peak Floating Point Operations per Second And Peak Memory Bandwidth for CPU and GPU



Chip to chip comparison of peak memory bandwidth in GB/s and peak double precision gigaflops for GPUs and CPUs since 2008. Data for Nvidia "Volta" V100 and Intel "Cascade Lake" Xeon SP are used for 2019 and projected into 2020. From:

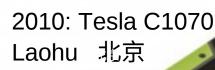
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/

Kepler, Pascal, Volta, Scaling, it works...

Volta V100 Pascal GF1080 Kepler K20m Spurzem, Berczik, et al., 2013, LNCS Supercomputing, 2013, pp. 13-25, Springer. (updated unpublished)

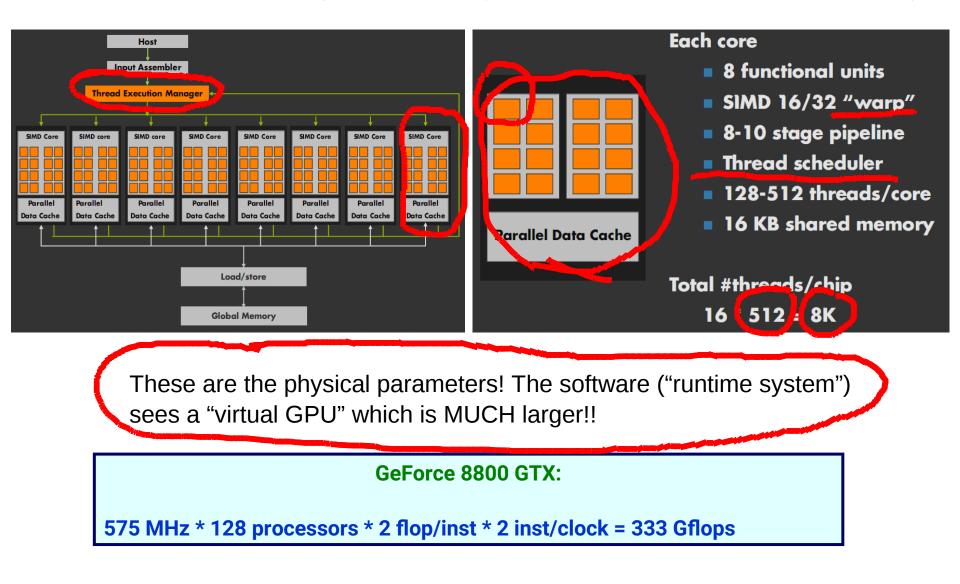
Fig. 4. Here we report a preliminary result from a benchmark test of our code on one Kepler K20 card; we compare with the performance on Fermi C2050 (used in the Mole-8.5 cluster), and the oldest Tesla C1060 GPU (used in the laohu cluster of 2009) - the latter is used as a normalization reference. We plot the speed ratio of our usual benchmarking simulation used in the previous figures, as a function of particle number. From this we see the sustained performance of a Kepler K20 would be about 1.4 - 1.5 Tflop/s. X = first GPU of laohu 2010

Graphics Processors (GPU) as General Purpose Supercomputers (GPGPU) NVIDIA RTX A5000



2008...

GeForce 9800 GTX, 128 Stream Proc., 512 MB GeForce 9800 GX2, 256 Stream Proc., 1 GB GeForce 9800 GT, 64 Stream Proc., 512 MB [...] 2009: Tesla ~200 Proc., 4GB 2010: Fermi ~400 Proc., 4GB 2013: Kepler K20, ~2500 Procs., 6GB 2016: Kepler K80, ~5000 Procs. 2017/18: Pascal, Volta, Ampere > 5000 Procs., 40 GB

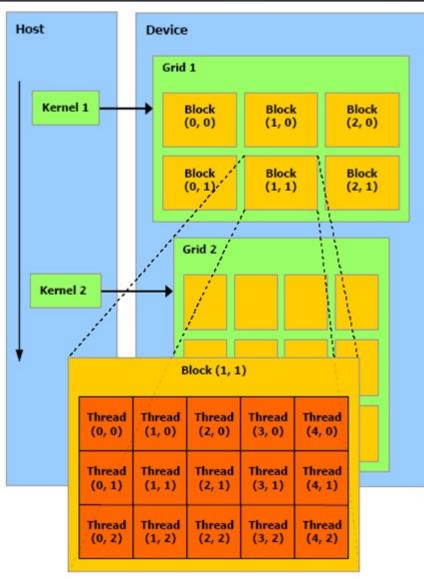

2022: kepler wn15 RTX A5000

- Up to 27.8 TFLOPS Single Precision
- 24 GB GDDR6 w/ECC Memory
- 4x DP1.4 Display Outputs
- PCIe-Gen 4
- Quadro Sync
- 2-Way NVLink
- vGPU support

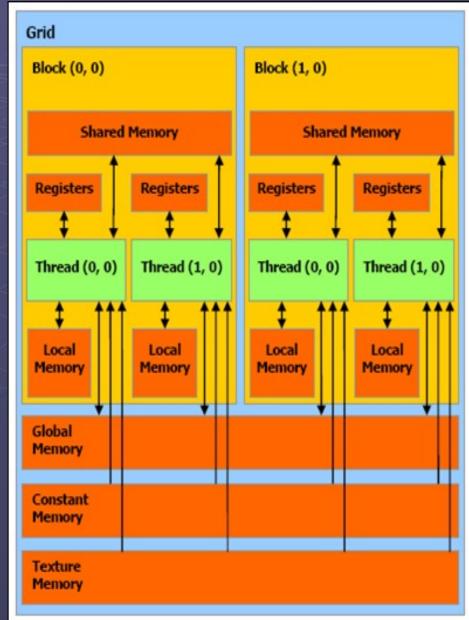
Hardware around 2006

architecture still valid – just scaled up (except: tensor cores and fast data links)

CPU and GPU; from CUDA NVIDIA Developer Zone at


http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

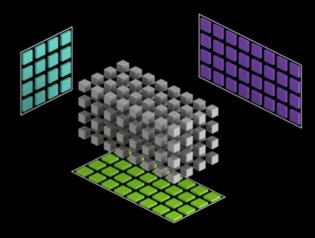
Core	Con trol	Core	Con trol											
L1 Cache		L1 Cache												
Core	Con trol	Core	Con trol											
L1 Cache		L1 Cache												
L2 Cache		L2 Cache												
L3 Cache				L2 Cache										
DRAM Memory								DRA	M		Me	emo	ory	
CPU				GPU										

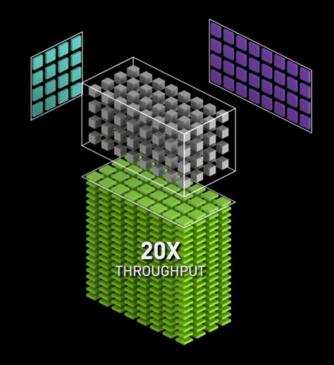

"The GPU devotes more transistors to computing" "favours data parallel operations"

GPU Structure

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

The host issues a succession of kernel invocations to the device. Each kernel is executed as a batch of threads organized as a grid of thread blocks

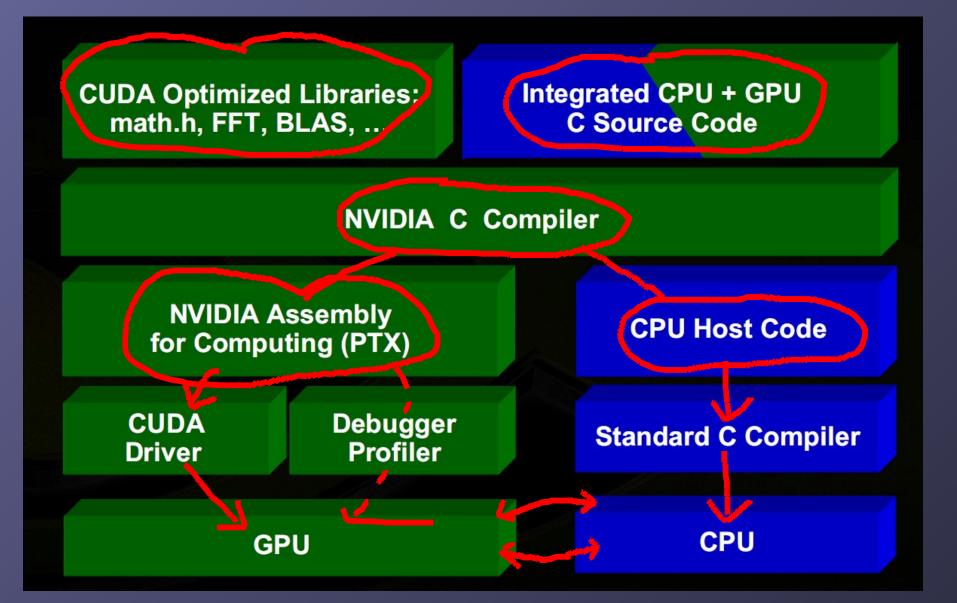

New feature in Volta, Ampere, Turing: Tensor Cores


https://www.nvidia.com/en-us/data-center/tensor-cores/

FP64 Tensor Cores: "A100 brings the power of <u>Tensor Cores to HPC</u>, providing the biggest milestone since the introduction of double-precision GPU computing for HPC. By enabling matrix operations in FP64 precision, a whole range of <u>HPC applications</u> that need double-precision math can now get a 2.5X boost in performance and efficiency compared to prior generations of GPUs." (Quote from NVIDIA webpages)

NVIDIA V100 FP32

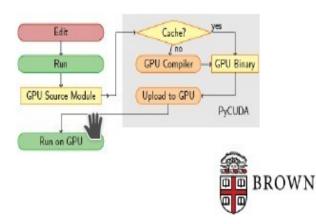
NVIDIA A100 Tensor Core TF32 with Sparsity


New feature in Volta, Ampere, Turing: Tensor Cores

https://www.nvidia.com/en-us/data-center/tensor-cores/

FP64 Tensor Cores: "A100 brings the power of <u>Tensor Cores to HPC</u>, providing the biggest milestone since the introduction of double-precision GPU computing for HPC. By enabling matrix operations in FP64 precision, a whole range of <u>HPC applications</u> that need double-precision math can now get a 2.5X boost in performance and efficiency compared to prior generations of GPUs." (Quote from NVIDIA webpages)

GPU Computing Applications


Libraries and Middleware											
cuDNN TensorRT	cuFFT cuBLA cuRAN cuSPAR	IS CULA ID MAGMA	Thrust NPP C	VSIPL SVM OpenCurrent	Physi Opti) iRay	x	MATLAB Mathematica				
Programming Languages											
c		C++ For	tran Pytho Wrappe	on Dire	ectComput	e	Directives (e.g. OpenACC)				
Ampere a Tensor Co		Pa ////	CUDA-Enabled	NVIDIA G	PUs						
NVIDIA Ampere Architecture (compute capabilities 8.x)						Tesla A	Series				
NVIDIA Turing Architecture (compute capabilities 7.x)			GeForce 2000 Series	Quadro RTX S	Series	Tesla T Series					
NVIDIA Volta Architecture (compute capabilities 7.x)		DRIVE/JETSON AGX Xavier		Quadro GV Se	Quadro GV Series		Tesla V Series				
	A Pascal Architecture oute capabilities.6.x) Kepler (3.X) Tegra K1		GeForce 1000 Series GeForce 700/800	Quadro P Seri O Quadro K		Tesla P Series Tesla K					
		Embedded	Consumer Desktop/Laptop	Professio Worksta	onal	10:	ata Center				

Python + CUDA = PyCUDA

- All of CUDA in a modern scripting language
- Full Documentation
- Free, open source (MIT)
- Also: PyOpenCL

- CUDA C Code = Strings
- Generate Code Easily
 - Automated Tuning
- Batteries included: GPU Arrays, RNG, ...
- Integration: numpy arrays, Plotting, Optimization, ...

http://mathema.tician.de/software/pycuda