
44
77

Some basic ideasSome basic ideas

Parallel ComputingParallel Computing

Evolution according to
Amdahl's law of the
theoretical speedup of
the execution of a
program in function of
the number of
processors executing it,
for different values of p.
The speedup is limited
by the serial part of the
program. For example,
if 95% of the program
can be parallelized, the
theoretical maximum
speedup using parallel
computing would be 20
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law (Gene Amdahl 1967)

Calculate Amdahl's Law:Calculate Amdahl's Law:
Let X be the part of my program (in terms of computing time) which can be parallelised. Let X be the part of my program (in terms of computing time) which can be parallelised.
The sequential computing time TThe sequential computing time Tseqseq is normalized to unity (1), and can be expressed as: is normalized to unity (1), and can be expressed as:

TTseqseq = 1 = X + (1-X) = 1 = X + (1-X)
The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast
communication):communication):

TTparpar = X/p + (1-X) = X/p + (1-X)

with processor number (core number) p ; with processor number (core number) p ;
Then the speed-up of the program S = TThen the speed-up of the program S = T

seqseq / T / T
parpar : :

S = 1 / (1-X+X/p) ; S = 1 / (1-X+X/p) ;

Note: TNote: Tparpar/T/Tseqseq = 1/S (sometimes also plotted) = 1/S (sometimes also plotted)
Note the limit of S for p>>1 and X~1 is very large: S = 1/(1-X). SNote the limit of S for p>>1 and X~1 is very large: S = 1/(1-X). S ～ ～ p p
With communication overhead:With communication overhead:

TTparpar = X/p + (1-X) + T = X/p + (1-X) + Tcommcomm → → S = 1 / (1-X+X/p+TS = 1 / (1-X+X/p+Tcommcomm))

If TIf T
commcomm independent of p we have for large p: S = 1 / (1-X + T independent of p we have for large p: S = 1 / (1-X + T

commcomm) = const.) = const.

If If TTcommcomm = c p = c pkk (k>0) we get: S = 1 / (1-X + c p (k>0) we get: S = 1 / (1-X + c pkk) → 0 for large p!!!) → 0 for large p!!!

Nopt

Parallel code on cluster

Strong and Soft Scaling

 Strong Scaling: Fixed Problem size, increase p
 Soft Scaling: Increase Problem size, increase p
 (constant amount of work per processing element)

Ansatz for Soft Scaling (Tcomm neglected here):
 TTseqseq = p (X + (1-X)) = p (X + (1-X))
 TTparpar = X + p (1-X) = X + p (1-X)
 If X~1: p>>1 :→ If X~1: p>>1 :→ TTseqseq ~ pX ; T ~ pX ; Tpar par ~ X ~ X
 S = TS = Tseqseq/T/Tparpar ~ p ~ p

55
22

ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs .
440 cores
= 704.000
GPU-Cores

Using
Mole-8.5
of
IPE/CAS
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak

55
33

Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU

Roofline Performance Model (LBL)
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity.
Arithmetic Intensity is the ratio of total floating-point operations to total
data movement (bytes).

https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/

Roofline Performance Model (LBL): Lorena Barba
Research Group at George Washington University: https://lorenabarba.com/

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

FMA = fused
multiply add

SFU = special
functional units

https://lorenabarba.com/
http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

