
  Introduction to GPU Accelerated ComputingIntroduction to GPU Accelerated Computing
Rainer Spurzem 

Astronomisches Rechen-Inst., ZAH, Univ. of Heidelberg, Germany
National Astronomical Observatories (NAOC), Chinese Academy of Sciences 

Kavli Institute for Astronomy and Astrophysics (KIAA), Peking University
https://astro-silkroad.eu

https://wwwstaff.ari.uni-heidelberg.de/spurzem/

Picture: Xishuangbanna, 
Yunnan, China by R.Sp.

Univ. Heidelberg

spurzem@ari.uni-heidelberg.de
spurzem@nao.cas.cn  

https://astro-silkroad.eu/
mailto:spurzem@ari.uni-heidelberg.de
mailto:spurzem@nao.cas.cn


      

  Introduction to GPU Accelerated ComputingIntroduction to GPU Accelerated Computing
Feb. 17-21, 2025Feb. 17-21, 2025

Table of Contents (subject to adjustment/change):
1. Monday morning 1: General Introduction Computer 
      Architecture, Many-Core, GPU and others…, Access...
2. Monday morning 2/afternoon: Access to bwUniCluster, CUDA Hello, 
      GPU Properties, First CUDA Scalar, Simple Vector Add
3. Tuesday morning 1: More on GPU Software and Hardware
4. Tuesday morning 2/afternoon: CUDA Vector Add, Scalar Products,
      Using Blocks and Threads
5. Wednesday morning: Parallelization and Amdahl's Law,
      GPU Acceleration, Future Architecture
6. Wednesday morning 2/afternoon: CUDA Scalar Products cont’d

Events, Histograms, Matrix Multiplication
7. Thursday Morning: Astrophysical N-Body Code
8. Thursday Afternoon: Astrophysical Parallel N-Body Code 
      Using MPI and GPU
9. Friday Morning: CUDA Matrix Mult., Histograms, Wrap-Up, Q+A, 
      Other Lectures (Wen-Mei Hwu)

   



      

Literature: why NVIDIA? CUDA … ?
easy to learn!! runs on our training system kepler
future? SYCL/openCL? HIP / HIPIFY ?

4th ed. 2022

  2010!!!



      

"CUDA is now the dominant language used for programming 
GPUs, one of the most exciting hardware developments of 
recent decades. With CUDA, you can use a desktop PC for 
work that would have previously required a large cluster of PCs 
or access to a HPC facility. As a result, CUDA is increasingly 
important in scientific and technical computing across the 
whole STEM community, from medical physics and financial 
modelling to big data applications and beyond. This unique 
book on CUDA draws on the author's passion for and long 
experience of developing and using computers to acquire and 
analyse scientific data. The result is an innovative text featuring 
a much richer set of examples than found in any other 
comparable book on GPU computing. Much attention has been 
paid to the C++ coding style, which is compact, elegant and 
efficient. A code base of examples and supporting material is 
available online, which readers can build on for their own 
projects"--

New Book of 2022, Text from Book advertisement in amazon.

Literature continued: 



      

“GPU systems have revolutionized the fields of artificial 
intelligence, data science, and high-performance 
computing. Their unparalleled ability to handle massive 
parallel processing tasks has made them indispensable 
for industries that rely on cutting-edge computational 
power. From AI model training to scientific simulations 
and beyond, understanding how to design and optimize 
GPU architectures is key to maximizing performance and 
staying ahead in a rapidly evolving tech landscape.”

“Authored by a high-performance computing expert, 
(Cobbs Walker) provides the most up-to-date, actionable 
insights on GPU system design. This book is based on 
years of hands-on experience building and optimizing 
GPU infrastructures, paired with real-world case studies 
that demonstrate successful implementations. Whether 
you're designing AI systems, working on complex 
simulations, or building GPU-driven applications, the 
expertise shared here is reliable and practical.”

For deeper interest in GPU hardware. 

Text from Book advertisement in amazon.

Literature continued: 



      

  Introduction to GPU Accelerated ComputingIntroduction to GPU Accelerated Computing
Feb. 17-21, 2025Feb. 17-21, 2025

“Table of Contents” what we will NOT cover:

 Artificial Intelligence / Machine Learning
 Graphics Rendering / Ray Tracing with GPU
 Using Tensor Cores for 3D simulations
 Other Languages such as HIP (AMD), OpenCL…

We will solely use CUDA for High Performance 
Computing on GPU (many simple examples, one real
Application).

What you learn here will give you a good start for all the 
applications not covered!



77

HistoryHistory

GPU ComputingGPU Computing



HistoryHistory

Erik Holmberg (1908-2000)Erik Holmberg (1908-2000)
Dissertation Univ. Lund (Schweden) (1937):Dissertation Univ. Lund (Schweden) (1937):
``A study of double and multiple galaxies´´``A study of double and multiple galaxies´´
Galaxies  often in Groups and PairsGalaxies  often in Groups and Pairs
Irregular Distribution of Satellite Galaxies Irregular Distribution of Satellite Galaxies 
                    (Holmberg-Effect)(Holmberg-Effect)

Father of numerical astrophysics?Father of numerical astrophysics?
» ...with 200 light bulbs...with 200 light bulbs



99

The Astrophysical Journal, Nov. 1941The Astrophysical Journal, Nov. 1941

HistoryHistory
http://cdsads.u-strasbg.fr/abs/1941ApJ....94..385H

http://cdsads.u-strasbg.fr/abs/1941ApJ....94..385H


      

Konrad Zuse (1910-1995) BerlinKonrad Zuse (1910-1995) Berlin

Z1 in parental flat 1936

Invented freely programmable Computer

...before von Neumann...

HARDWARE



      

Zuse Z4: 1944 Berlin, 1950 Zürich, 1954 Frankreich
                1959 Deutsches Museum München

Computing Speed 0.03 MHz Memory  256 byte

HistoryHistory



• John von Neumann (1903-1957)John von Neumann (1903-1957)
Born Budapest, Lecturer Berlin, since 1930 Princeton Univ. Born Budapest, Lecturer Berlin, since 1930 Princeton Univ. 
Fundamental Architecture of an electronic computing device(1946)Fundamental Architecture of an electronic computing device(1946)

HARDWARE

Source: https://en.wikipedia.org/wiki/Von_Neumann_architecture#/media/File:Von_Neumann_Architecture.svg

https://en.wikipedia.org/wiki/Von_Neumann_architecture#/media/File:Von_Neumann_Architecture.svg


      

Astronomisches 
Rechen-Institut (ARI) 
at Univ. of 
Heidelberg, Germany

Siemens 2002Siemens 2002
Computer in 1964Computer in 1964
At ARIAt ARI



S.v. Hoerner,
Z.f.Astroph. 1960, 63

Siemens 2002
N=4,8,12,16 (4 Trx)

N=16,25 (40 Trx)

HistoryHistory

http://cdsads.u-strasbg.fr/abs/1963ZA.....57...47V

http://cdsads.u-strasbg.fr/abs/1960ZA.....50..184V

http://cdsads.u-strasbg.fr/abs/1963ZA.....57...47V
http://cdsads.u-strasbg.fr/abs/1960ZA.....50..184V


      

Seymour Cray (1925-1996)Seymour Cray (1925-1996)
““father of supercomputing”father of supercomputing”

https://en.wikipedia.org/wiki/Women_in_computinghttps://en.wikipedia.org/wiki/Women_in_computing

CRAY1: Vectorregisters (1976)
160 Mflop, 80 MHz, 8 MByte RAM
CRAY2: (1984)
1Gflop, 120MHz, 2GByte RAM

HistoryHistory

https://en.wikipedia.org/wiki/Women_in_computing


      

Supercomputer
JUGENE
IBM Blue Gene
At FZ Jülich,
Germany

Opening Ceremony June 2008

HistoryHistory



      

Computational Science...
...after von Neumann...

Problems:
Power Consumption
Efficiency for  Real Applications

Exaflop/s

Petaflop/s

Teraflop/s

Gigaflop/s Thanks to Horst Simon, LBNL/NERSC for this diagram.



11
88

Special HardwareSpecial Hardware
AcceleratorsAccelerators

GPU ComputingGPU Computing



      

New Jersey, Indiana, Heidelberg

HARDWARE



      

Beijing, ChinaGPU:

2010

Peter 
Berczik
Silk Road
Team



      

BwUniCluster 2.0 

https://wiki.bwhpc.de/e/BwUniCluster2.0

The bwUniCluster 2.0 is the joint high-performance computer system of Baden-
Württemberg's Universities and Universities of Applied Sciences for general 
purpose and teaching and located at the Scientific Computing Center (SCC) at 
Karlsruhe Institute of Technology (KIT). The bwUniCluster 2.0 complements the 
four bwForClusters and their dedicated scientific areas. 

Total Number of Nodes: 848 
GPU Nodes: 39 (NVIDIA Ampére A100, Volta V100)



NVIDIA Ampere A100 GPU, 54 billion transistors, 6920 cores 



NVIDIA Volta V100 GPU, 21 billion transistors, 5120 cores 



      

NVIDIA Ampere A100 GPU, 54 billion transistors, 6920 cores
(Hopper H100, ...)

With NVLINK
Without NVLINK



AMD Instinct
MI250X GPU

Nov.2023 Lists:
Used in:

Frontier (#1 US)
And LUMI (#5 FIN)



New “Grace Hopper GH200 
superchip” ; GPU + CPU on 
one platform; used in new 
Jupiter supercomputer at JSC 
Jülich.

https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/

Hopper GPU 
16896 CUDA cores
528 tensor cores
34 Tflop/s double prec.
67 Tflop/s single prec.
67 Tflop/s tensor core     
                 double prec.

72 Armv9 CPU cores
480 GB memory



USA

USA

 

USA

USA

Italy

From https://www.top500.org/
Nov. 2023 List GPU AMD InstinctGPU AMD Instinct

GPU NVIDIA HopperGPU NVIDIA Hopper

GPU AMD InstinctGPU AMD Instinct

Intel Data Center GPUIntel Data Center GPU

GPU AMD InstinctGPU AMD Instinct

https://www.top500.org/


USA

USA

 USA

Finland
(EuroHPC)

Japan

  GPU NVIDIA GH200 GraceGPU NVIDIA GH200 Grace

GPU NVIDIA Ampere GPU NVIDIA Ampere 

From https://www.top500.org/
Nov. 2024 List

Fujitsu ArmFujitsu Arm

GPU AMD InstinctGPU AMD Instinct

GPU AMD InstinctGPU AMD Instinct

https://www.top500.org/


Top 500 List November 2023 – 
Performance Share of Countries From https://www.top500.org

http://www.top500.org/


Supercomputer, Kajaani, Finland

EuroHPC and LUMI consortium:
Finland, Belgium, Czech Republic, Denmark, Estonia, 
Iceland, Norway, Poland, Sweden, and Switzerland.

Using only
Hydroelectric
Power and its
Heat used for 
heating buildings.

No. 5 in top500
No. 7 in green500

2.2 million cores
~12.000 AMD GPUs



33
11

富岳
Mt. Fuji

/2021

RIKEN, Kobe, JAPAN

7.6 million cores, 442 Pflop/s 



 

JUWELS Booster 936 nodes (AMD CPU, 4x Ampere GPU)
~450.000 AMD cores, 25 million NVIDIA Ampere GPU cores
~ 70 Pflop/s SP    ~ 44 Pflop/s DP
No. 18 in top500 list, No. 3 in green500 list

Watch out for new Exascale System at Jülich (JSC): JEDI / JUPITER !



From https://www.top500.org
Moore’s Law?

Bend in Curve due to
Accelerators

Green: Cumulative
Orange: Top System
Blue: Average of 500

http://www.top500.org/


GREEN 500 list Nov. 2024  
Power Efficiency 
(Gflops/Watts), 
see also top500 webpage
right: 1-5
below: 6-10

GPU NVIDIA GPU NVIDIA 
Grace HopperGrace Hopper

GPU NVIDIAGPU NVIDIA
Grace HopperGrace Hopper

GPU AMD InstinctGPU AMD Instinct

GPU NVIDIAGPU NVIDIA
Grace HopperGrace Hopper

GPU NVIDIA HopperGPU NVIDIA Hopper

GPU AMD InstinctGPU AMD Instinct

GPU NVIDIAGPU NVIDIA
Grace HopperGrace Hopper

GPU NVIDIA GPU NVIDIA 
Grace HopperGrace Hopper

GPU NVIDIA GPU NVIDIA 
HopperHopper

GPU NVIDIA GPU NVIDIA 
HopperHopper

GPU AMD GPU AMD 
InstinctInstinct



33
55

More on GPUMore on GPU

GPU ComputingGPU Computing



      

2008…
GeForce 9800 GTX, 128 Stream Proc., 512 MB
GeForce 9800 GX2, 256 Stream Proc., 1 GB
GeForce 9800 GT, 64 Stream Proc., 512 MB
[...]
2009: Tesla ~200 Proc., 4GB
2010: Fermi ~400 Proc., 4GB
2013: Kepler K20, ~2500 Procs., 6GB
2016: Kepler K80, ~5000 Procs.
2016-18: Pascal, Volta, Turing > 5000 Procs., 40 GB
2019-25: Ampere, Hopper, …  > 10000 Procs. 240 GB

Graphics Processors (GPU) as  General Purpose 
Supercomputers (GPGPU)

Pascal 2016: Pascal 2016: 
Quadro P6000Quadro P6000

2010: Tesla C1070
Laohu  北京北京

Turing 2019:Turing 2019:
GeForce RTX 2080ti GeForce RTX 2080ti 

老虎

https://www.mdbg.net/chinese/dictionary?page=worddict&email=&wdrst=0&wdqb=laohu#


Peak Floating Point Operations per Second 
And Peak Memory Bandwidth for CPU and GPU

Chip to chip comparison of peak memory bandwidth in GB/s and peak double precision gigaflops for 
GPUs and CPUs since 2008. Data for Nvidia “Volta” V100 and Intel “Cascade Lake” Xeon SP are 
used for 2019 and projected into 2020. From:
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/


      

GeForce 8800 GTX:

575 MHz * 128 processors * 2 flop/inst * 2 inst/clock = 333 Gflops

Hardware around 2006
architecture still valid – just scaled up (except: tensor cores and fast data links)

These are the physical parameters! The software (“runtime system”)These are the physical parameters! The software (“runtime system”)
sees a “virtual GPU” which is MUCH larger!! sees a “virtual GPU” which is MUCH larger!! 



CPU and GPU; from CUDA NVIDIA Developer Zone at
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

“The GPU devotes more transistors to computing”
“favours data parallel operations”

Memory                                                      Memory



      

GPU Structure       https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html


New feature in Volta, Ampere, Turing: Tensor Cores
https://www.nvidia.com/en-us/data-center/tensor-cores/

FP64 Tensor Cores: “A100 brings the power of Tensor Cores to HPC, providing the biggest milestone 
since the introduction of double-precision GPU computing for HPC. By enabling matrix operations in 
FP64 precision, a whole range of HPC applications that need double-precision math can now get a 2.5X 
boost in performance and efficiency compared to prior generations of GPUs.” (Quote from NVIDIA 
webpages)

https://www.nvidia.com/en-us/data-center/tensor-cores/
https://blogs.nvidia.com/blog/2020/05/14/double-precision-tensor-cores/
https://www.nvidia.com/en-us/gpu-accelerated-applications/


      

CUDA



      

Kepler (3.x)           Tegra K1                GeForce 700/800   Quadro K                Tesla K

Ampere and Volta:
Tensor Cores/NVLink

… Hopper… Blackwell … X 



https://documen.tician.de/pycuda/
https://developer.nvidia.com/cuda-python



44
55

Some basic ideasSome basic ideas

Parallel ComputingParallel Computing



Evolution according to 
Amdahl's law of the 
theoretical speedup of 
the execution of a 
program as function of 
the number of processors 
p executing it, for 
different values of p. The 
speedup is limited by the 
serial part of the program. 
For example, if 95% of 
the program can be 
parallelized, the 
theoretical maximum 
speedup using parallel 
computing would be 20 
times.

By Daniels220 at English Wikipedia - Own work based on: File:AmdahlsLaw.png, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6678551

Amdahl's Law  (Gene Amdahl 1967)

https://commons.wikimedia.org/w/index.php?curid=6678551


      

Calculate Amdahl's Law:Calculate Amdahl's Law:
Let X be the part of my program (in terms of computing time) which can be parallelised. Let X be the part of my program (in terms of computing time) which can be parallelised. 
The sequential computing time TThe sequential computing time T

seqseq is normalized to unity (1), and can be expressed as: is normalized to unity (1), and can be expressed as:
TTseqseq = 1 = X + (1-X) = 1 = X + (1-X)

The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast The parallel computing time Tpar under ideal conditions (ideal load balancing, ultrafast 
communication):communication):

TTparpar = X/p + (1-X) = X/p + (1-X)                                

with processor number (core number)   p ; with processor number (core number)   p ; 
Then the speed-up of the program S = TThen the speed-up of the program S = T

seqseq / T / T
parpar : :

S = 1 / (1-X+X/p)        ;    S = 1 / (1-X+X/p)        ;    
    

Note: TNote: Tparpar/T/Tseqseq = 1/S  (sometimes also plotted) = 1/S  (sometimes also plotted)
Note the limit of S for p>>1 and X~1  is very large:  S = 1/(1-X).   Note the limit of S for p>>1 and X~1  is very large:  S = 1/(1-X).   
With communication overhead:With communication overhead:

TTparpar = X/p + (1-X)  + T = X/p + (1-X)  + Tcommcomm                        →      →      S = 1 / (1-X+X/p+TS = 1 / (1-X+X/p+Tcommcomm))

If TIf Tcommcomm independent of p we have for large p:  S = 1 / (1-X + T independent of p we have for large p:  S = 1 / (1-X + Tcommcomm) = const.) = const.

If If TTcommcomm = c p = c pkk (k>0) we get:                              S = 1 / (1-X + c p (k>0) we get:                              S = 1 / (1-X + c pkk)  → 0 for large p!!! )  → 0 for large p!!!     



Nopt

Parallel code on cluster



Strong and Soft Scaling

  Strong Scaling: Fixed Problem size, increase p 
  Soft Scaling: Increase Problem size, increase p
  (constant amount of work per processing element)

Ansatz for Soft Scaling  (Tcomm neglected here):
 TTseqseq = p (X + (1-X)) = p (X + (1-X))
  TTparpar = X  + p (1-X) = X  + p (1-X)
      S = TS = Tseqseq/T/Tparpar = p  / (X+p (1-X)) = p  / (X+p (1-X))
      If X~1: S = p ; TIf X~1: S = p ; Tparpar = X = const.    = X = const.    



55
00

ΦGPU – NBODY Code

350 Teraflop/s
1600 GPUs . 
440 cores
= 704.000 
GPU-Cores

Using 
Mole-8.5
of 
IPE/CAS 
Beijing

Berczik et al.
2013

Strong and
Soft Scaling
In China...

~ 70% of peak

https://ui.adsabs.harvard.edu/abs/2013hpc..conf...52B/abstract



55
11



Huang, Berczik, Spurzem, Res. Astron. Astroph. 2016, 16, 11.

NBODY6++GPU

https://ui.adsabs.harvard.edu/abs/2016RAA....16...11H/abstract



      

Roofline Performance Model (LBL)
http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. 
Arithmetic Intensity is the ratio of total floating-point operations to total 
data movement (bytes). 

http://crd.lbl.gov/departments/computer-science/PAR/research/roofline


33

Roofline Performance Model (LBL): Lorena Barba 
Research Group at George Washington University: 

https://engineering.gwu.edu/lorena-barba
http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png

FMA = fused 
multiply add

SFU = special 
functional units

http://lorenabarba.com/wp-content/uploads/2012/01/roofline_slide.png


55
55

Friday, Feb. 21:Friday, Feb. 21:

Matrix MultiplicationMatrix Multiplication

Histograms Histograms (from Jason Sanders’ book; see our webpage link)(from Jason Sanders’ book; see our webpage link)

https://developer.nvidia.com/cuda-examplehttps://developer.nvidia.com/cuda-example

Download source code of examples in Jason Sanders’ bookDownload source code of examples in Jason Sanders’ book

(Includes also HANDLE_ERROR routine)(Includes also HANDLE_ERROR routine)

Timing and DebuggingTiming and Debugging

Wrap-Up of CUDA/OutlookWrap-Up of CUDA/Outlook

https://developer.nvidia.com/cuda-example


55
66

static void HandleError( cudaError_t err,

                         const char *file,

                         int line ) {

    if (err != cudaSuccess) {

        printf( "%s in %s at line %d\n", cudaGetErrorString( 
err ),

                file, line );

        exit( EXIT_FAILURE );

    }

}

#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, 
__LINE__ ))

Make sure that this code appears somewhere in your source, 
or somewhere in a header you #include.

Error Handler used in Jason Sanders’ book examples



55
77

Matrix Intuitive Multiply



      



      



      

Histogram ComputationHistogram Computation
8_histo8_histo

Task: 
100 million integers 0 ≤ ni < 256;
Randomly distributed with equal probability;
What is the frequency (number) with which every integer occurs?

Expect: equal distribution again, with fluctuations. 

Source: https://www.researchgate.net/publication/
261392752_FPGA_based_RNG_for_random_WOB_method_in_unit_cube_capacitance_calculation

https://www.researchgate.net/publication/


66
11

This Timing API is used in 8_histo/histo.cu !



      

 CUDA – GNU Debugger – CUDA-gdb
do not forget:   nvcc -g -G  …   before running … 
(not possible on kepler, login node has no GPU!)

http://docs.nvidia.com/cuda/cuda-gdb/index.html



      

Linux Terminal commandline:
nsys       (nsys --help)



Exercises afternoons

0. hello, device-   first kernel call, hello world, GPU properties
1. add              -   vector addition using one thread in one block only
2. add-index    -   vector addition using blocks in parallel, 
                              one thread per block only.
3. add-parallel -   vector addition using all blocks and threads in parallel
4. dot               -  scalar product using shared memory of one block 
                              only for reduction
5. dot-full         -  scalar product using shared memory and 
                              atomic add across blocks
6. dot-perfect   - scalar product; fat threads and final reduction on host.
7. matmul       -  matrix multiplication with tiled access shared memory.
8. histo            -  histogram using fat threads and atomic add 
                              on shared and global memory, timing
                          

Wrapping Up 1



      

Wrapping Up 2

Elements of CUDA C learnt:

threadId.x , blockId.x, blockDim.x, gridDim.x               Threads, Blocks
(threadId.y, blockId.y, blockdim.y, gridDim.y               (matmul coming with 2D grids)
kernel<<<n,m>>> (...)                                                  kernel calls
Kernel<<n,m,size>>(…) kernel call with dyn. alloc. size
kernel<<<dimBlock,dimGrid>>>(…)                            dim3 variable type (matmul)
__global__                                              device code
__shared__                                                                   shared memory on GPU
cudaMalloc    / cudaFree                                               manage global memory of GPU
cudaMemcpy / cudaMemset                                         copy/set to or from memory
cudaGetDeviceProperties                                             get device properties in program
cudaEventCreate, cudaEventRecord,
cudaEventSynchronize, cudaEventElapsedTime,
cudaEventDestroy                                                         CUDA profiling
AtomicAdd (on global  or shared mem.)                        atomic functions



Wrapping Up 3

What we have not yet learnt...

__constant__                                                        constant memory on GPU
__device__                                                           functions device to device
Intrinsic Functions  ( __device__ type)
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE

__host__                                                               functions host to host
More atomic functions
cudaBindTexture                                                   using texture memory
fat threads for 2D and 3D stencils                        thread coalescence opt.
cudaStreamCreate, cudaStreamDestroy             working with CUDA streams
<<<n,m,size,s>>>                                                kernel call with streams s
using Tensor Cores
...                                              

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

