nature astronomy

Gravitational wave spectrum

Spinning binary black hole mergers in galactic GC's and gravitational wave signals

> **Margarita Sobolenko** MAO NASU, Kyiv, Ukraine

Collaborators:

Peter Berczik Manuel Arca Sedda Miroslaw Giersz Konrad Maliszewski Oleksandr Veles

Volkswagen Trilateral Project Dynamical Mechanisms of Accretion in Galactic Nuclei Sep. 6-8, 2021

Detectability of intermediate-mass black holes in multiband gravitational wave astronomy Karan Jani, Deirdre Shoemaker & Curt Cutler Volume 4 Issue 3, March 2020

LIGO-Virgo: O1 and O2 events 2015-2017

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs *Phys. Rev. X 9, 031040* – Published 4 September 2019

LIGO-Virgo: O3a events 04/2019-09/2019

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run *Phys. Rev. X 11, 021053* Published 9 June 2021

3: BH-BH

1: NS-NS 2: BH-NS/ BH-BH 33: BH-BH

36

GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run *arXiv:2108.01045* Published 2 August 2021

1: BH-NS/

7: **BH-BH**

BH-BH

Black hole spin

-M- **Total angular momentum** of the binary: $I = L + S_1 + S_2$,

$$|S_{1,2}| = \chi_{1,2} \frac{Gm_{1,2}^2}{c},$$

where $\chi_{1,2} \in [0,1]$ is **dimensionless spin magnitude**. Dimensionless spin magnitude was limited by values 0, 1 or -1 independently for two BHs in three directions *x*, *y*, *z*. Total number of spin combinations is 49.

-**Post-Newtonian** terms were taken up to 3.5PN + spin-orbit terms + spin-spin terms:

$$\frac{d\mathbf{v}}{dt} = \mathbf{a}_{\mathrm{N}} + \frac{1}{c^2} \mathbf{a}_{1\mathrm{PN}} + \frac{1}{c^2} \mathbf{a}_{1.5\mathrm{PN},\mathrm{SO}} + \frac{1}{c^4} \mathbf{a}_{2\mathrm{PN}} + \frac{1}{c^4} \mathbf{a}_{2\mathrm{PN},\mathrm{SS}} + \frac{1}{c^5} \mathbf{a}_{2.5\mathrm{PN}} + \frac{1}{c^4} \mathbf{a}_{2.5\mathrm{PN},\mathrm{SO}} + \frac{1}{c^6} \mathbf{a}_{3\mathrm{PN}} + \frac{1}{c^7} \mathbf{a}_{3.5\mathrm{PN}} + O\left(\frac{1}{c^8}\right)$$

M-Gravitational wave strain:

$$h^{ij} \approx \frac{4G\mu}{Dc^4} \left[v^i v^j - \frac{Gm}{r} n^i n^j \right] \longrightarrow \frac{h_+}{h_{\times}} \text{ polarization}$$

Black hole spin in LIGO-Virgo-KAGRA

-M-Effective inspiral spin parameter (*Damour 2001PhRvD.64l4013D*) measures the massaveraged spin along the orbital angular momentum axis, that LIGO can infer from the gravitational waveform:

$$\chi_{\text{eff}} = \frac{m_1 \chi_1 \cos \theta_1 + m_2 \chi_2 \cos \theta_2}{m_1 + m_2}.$$
$$\chi_{\text{eff}} = 1 \quad : \mathbf{S} \uparrow \mathbf{L} \ \chi_{\text{eff}} = 0 \quad : \mathbf{S}_1 \downarrow \uparrow \mathbf{S}_2$$
$$\chi_{\text{eff}} = -1 \quad : \mathbf{S} \downarrow \downarrow \mathbf{L} \qquad \qquad \chi_{1,2} \ll 0$$

The effective precessing spin (Schmidt et al. 2015PhRvD.91.024043) measures the spin in the orbital plane, perpendicular to orbital angular momentum axis:

$$\chi_{\rm p} \sim \chi_1 \sin \theta_1.$$

$$\mathcal{M} \equiv (m_0 m_1)^{3/5} (m_0 + m_1)^{-1/5},$$

where *mass ratio* $q = m_1/m_0 \ (m_1 < m_0)$ and total mass $M = m_1 + m_0$.

Set of models I (SI): Initial parameters

Breaching the limit: formation of GW190521-like and IMBH mergers in young massive clusters

4 (3 long runs with reduced Δt_{out}) + 4*49 spin runs = **200 models**

SI: waveforms for h_+/h_{\times} polarizations

SI: Waveforms for h_+/h_{\times} polarizations

SI: Time frequency maps and h_+/h_{\times} waveforms

SI: Time frequency maps and h_+/h_\times waveforms

SI: Time frequency maps and h_+ waveforms

SI: Time frequency maps and h_{\times} waveforms

Orbit evolution

Hang up effect (Campanelli et al., 2006PhRvD, 74, 041501)

Orbit evolution: last 100 sec

Orbit evolution: last 100 sec

SI: Catalog of time frequency maps and $h_{+,\times}$ waveforms

M	\mathcal{M}	m_0	m_1	q	sma	e	$t_{ m form}$	$t_{ m gw}$	sim. up to $3.5\mathcal{P}N$
${\rm M}_{\odot}$	${\rm M}_{\odot}$	${\rm M}_{\odot}$	${ m M}_{\odot}$		$ m R_{\odot}$		Myr	yr	yr
349	62.3	328	21	0.064	1.21	0.41	113	44	69
329	62.3	307	22	0.072	0.7	0.085	348	16	16
355	70.7	329	26	0.079	697	0.997	369	3e4	4.10948e5
307	60.4	285	22	0.077	36.7	0.955	11.2	8.5e3	4.1326e4

Set of models II (SII)

Properties of IMBHs escaping from star clusters author: Konrad Maliszewski 18 May 2021, Teeminar

author: Konrad Maliszewski supervisors: Mirosław Giersz, Dorota Rosińska co-workers: Arkadiusz Hypki

mass_buildup_mergers.txt: list of 131 binaries

Set of models II (SII)

Run	M, M_{\odot}	$\mathcal{M},\mathrm{M}_{\odot}$	m_0, M_\odot	m_1, M_\odot	q	a, R_{\odot}	a, AU	e	$T_{ m merg},{ m yr}$	$T_{\rm merg}, { m yr}$	$T_{\rm merg}, { m yr}$
										RK4 ^a	sim. up to $3.5\mathcal{P}N$
2	443.181	68.2	422.6400	20.5410	0.0486016	25.0410	0.1164520	0.9559200	3.638860000E+08	3.695516913E + 03	3.7787E + 03
6	595.418	168.9	510.3500	85.0680	0.1666860	633.5100	2.9461200	0.9991400	8.222370000E+08	7.272909814E + 02	3.340E + 02
9	143.036	41.4	121.8000	21.2360	0.1743510	24.7450	0.1150760	0.9745300	9.976830000E + 08	5.946445586E + 03	6.2124E + 03
15	256.010	79.9	211.4600	44.5500	0.2106780	284.3800	1.3225000	0.9980000	2.576190000E + 08	2.813705859E+03	2.7372E+03
18	349.159	113.7	282.6700	66.4890	0.2352180	562.5900	2.6163100	0.9988600	1.990980000E + 08	2.507096619E + 03	2.1929E + 03
25	211.460	70.4	169.2300	42.2300	0.2495420	152.0200	0.7069640	0.9952000	2.277190000E + 08	7.241488106E + 03	7.3900E + 03
38	216.321	81.6	157.9800	58.3410	0.3692940	28.3510	0.1318450	0.9700000	8.898320000E+07	3.282037855E+03	3.3422E + 03
40	282.672	107.2	205.3100	77.3620	0.3768060	133.5300	0.6209770	0.9986400	1.104350000E + 08	6.988853977E+01	1.85E + 01
42	157.778	60.7	112.9400	44.8380	0.3970070	95.7140	0.4451150	0.9985100	3.692100000E + 08	8.508170059E+01	3.78E + 01
52	134.505	54.4	89.9550	44.5500	0.4952480	303.4000	1.4109500	0.9994900	3.915930000E + 08	4.317333595E+02	1.375E+02
86	106.500	45.4	63.2700	43.2300	0.6832620	0.4666	0.0021699	0.1698200	2.763830000E+08	2.208072706E+01	2.21E + 01
102	144.994	62.7	79.7830	65.2110	0.8173550	132.9000	0.6180470	0.9989100	1.42100000E + 08	1.257093380E + 02	5.05E + 01

→ 12 (3 long runs with reduced Δt_{out}) + 12*49 spin runs = 600 models

SI/SII: mass ratio q dependence

Time [sec]

Time [sec]

GWTC-1,2,2.1/SI/SII

GWTC-1,2,2.1/SI/SII

Name	M	\mathcal{M}	m_1	m_2	q	$\chi_{ m eff}$	comments
	${ m M}_{\odot}$	${ m M}_{\odot}$	${ m M}_{\odot}$	${ m M}_{\odot}$, von	
9	143.036	41.4	121.8000	21.2360	0.1743510		
GW190929_012149	$104.3\substack{+34.9\\-25.2}$	$35.8^{+14.9}_{-8.2}$	$80.8^{+33.0}_{-33.2}$	$24.1^{+19.3}_{-10.6}$	$0.298\substack{+0.180\\-0.613}$	$0.01\substack{+0.34 \\ -0.33}$	
GW190403_051519	$110.5^{+30.6}_{-24.2}$	$36.3^{+14.4}_{-8.8}$	88.0 ^{+28.2} -32.9	$22.1_{-9.0}^{+23.8}$	$0.251_{-0.582}^{+0.138}$	$0.70_{-0.27}^{+0.15}$	The primary components fall in the mass gap pre- dicted by pair-instability supernova theory. Binary with significantly asymmetric mass ratios q < 0.61 at 90% credibility. Recovering a non-zero $\chi_{\rm eff}$ at 90% credibility. Primary dimensionless spin is measured to be $\chi_1 = 0.92^{+0.07}_{-0.22}$. This represents the most nearly- extremal spin observed using GWs.
86	106.500	45.4	63.2700	43.2300	0.6832620		
$GW190519_{153544}$	$106.6\substack{+13.5 \\ -14.8}$	$44.5_{-7.1}^{+6.4}$	$66.0^{+10.7}_{-12.0}$	$40.5^{+11.0}_{-11.1}$	$0.614\substack{+0.230\\-0.340}$	$0.31\substack{+0.20 \\ -0.22}$	Source with $\chi_{\text{eff}} > 0$.
GW190701_203306	$94.3^{+12.1}_{-9.5}$	$40.3^{+5.4}_{-4.9}$	$53.9^{+11.8}_{-8.0}$	$40.8^{+8.7}_{-12.0}$	$0.757_{-0.321}^{+0.319}$	$-0.07^{+0.23}_{-0.29}$	
GW190706_222641	$104.1\substack{+20.2\\-13.9}$	$42.7^{+10.0}_{-7.0}$	$67.0^{+14.6}_{-16.2}$	$38.2^{+14.6}_{-13.3}$	$0.570\substack{+0.265\\-0.469}$	$0.28\substack{+0.26 \\ -0.29}$	Source with $\chi_{\text{eff}} > 0$.
102	144.994	62.7	79.7830	65.2110	0.8173550		
GW190521	$163.9^{+39.2}_{-23.5}$	$69.2^{+17.0}_{-10.6}$	$95.3^{+28.7}_{-18.9}$	$69.0^{+22.7}_{-23.1}$	$0.724_{-0.476}^{+0.354}$	$0.03\substack{+0.32 \\ -0.39}$	Previous most massive BBH. Dimensionless spin magnitude $\chi_{i=\{1,2\}} > 0.8$ with 58% credibility.
GW190426_190642	$184.4_{-36.6}^{+41.7}$	$77.1^{+19.4}_{-17.1}$	$106.9\substack{+41.6\\-25.2}$	$76.6\substack{+26.2\\-33.6}$	$0.717\substack{+0.427\\-0.542}$	$0.19\substack{+0.43 \\ -0.40}$	The primary components fall in the mass gap pre- dicted by pair-instability supernova theory. Supersedes the previous most massive BBH.
GW1905	521		²⁵ 4 -20 2 -15 <u>33 00</u> 0 -10 <u>5</u> -2				WB: SNR=7.8 LL: SNR=7.9

whitened data (16:512 Hz)

0.55

0.6

-1.00

0,2

0.4 0.6 Yo

0.8

1,0

3 4 obability per pixel

-4

0.55 0.6 0.65

0.7

0.15 0.2 0.25 0.3 0.3

0.35

0.4

0.45

0.5

GWTC-1,2,2.1/SI/SII

Preliminary results

- We obtained h_+ and h_{\times} polarization waveforms and time frequency maps for set of BBHs with mass ratio q = 0.064-0.0817 and 49 spin combinations.
- -M-System with beating in waveforms should have non-zero spin $\chi_{1,2}$ at least for a more massive BH and non-symmetric mass ratio q.
- -M- System with non-zero effective spin χ_{eff} should have non-zero spin $\chi_{1,2}$ at least for a more massive BH. If such systems have non-symmetric mass-ratio q we should see beating in waveforms and time-frequency picture.

To do list

- Me Move from h_+ and h_{\times} polarization waveforms to some linear combination h(t), which detected by LIGO-Virgo-KAGRA.
- Estimate precessing spin parameter χ_p .
- -M- Estimate final mass M_f and final spin χ_f after merging.
- -M- Continue simulations with numerical relativity, effective one body etc... ?

Caveats

- -M- Waveforms and time-frequency maps obtained just for early inspiral, not late inspiral and merging, because we work with PN terms.
- Mr~ In our models we use maximum value of spin and chosen directions, which do not cover the full space of parameters.

