

Breaching the limit: merging stellar and intermediate-mass black holes in dense star clusters

Manuel Arca Sedda Colls: Pau Amaro-Seoane, Xian Chen, Francesco Rizzuto, Thorsten Naab, Rainer Spurzem, Mirek Giersz, Jeremiah Ostriker ArXiv: 2007.13746 ArXiv: 2105.07003

6/8 - 09 - 2021

Summary

A. Formation of IMBHs in (young) clusters

B. IMBH-BH mergers in dense clusters

C. Perspectives for current and future GW detectors

Accretion Processes in Galactic Nuclei 6/8 - 09 - 2021

Formation of IMBHs in star clusters: why are they relevant for the physics of galactic nuclei?

 NCs in Galactic Nuclei might form (at least partly) via infall of massive clusters
 (e.g. *Tremaine et al 1975, Capuzzo-Dolcetta 1993, Antonini et al 2012, Arca Sedda and Capuzzo-Dolcetta 2014, 2016, 2017a, 2017b, Arca Sedda et al 2015, 2016, 2018, 2021*)

2. If infalling clusters host an IMBH, NCs might host IMBH-SMBH binaries and multiplets (e.g. *Ebisuzaki 2001, Portegies-Zwart et al 2006, Arca Sedda and Gualandris 2018, Arca Sedda and Capuzzo-Dolcetta 2019, Askar et al 2020, 2021*)

3. IMBH-SMBH mergers might be promising sources of GWs for future detectors (e.g. *Amaro Seoane et al 2017, Sesana et al (incl.* **Arca Sedda)** 2020, Amaro Seoane, **Arca Sedda** et al 2021)

Arca Sedda, M. & Gualandris, A. (2018)

Arca Sedda, M. & Capuzzo-Dolcetta, R. (2019)

Formation of IMBHs in young clusters

From Rizzuto et al (2021)

- 1. Direct *N*-body simulations with GR effects for binary COs
- 1.1 No GW recoil!
- 1.2 No Spins!!
- 2. An <u>IMBH forms in 17 cases out of 80</u> (~20%)

From Arca Sedda et al (ArXiv: 2105.07003)

Use NR fitting formulae to measure spin and GW kicks for;

- a. 2 IMBH-BH mergers
- b. 1 IMBH-BH-BH merger
- c. 1 triple BH merger chain

Rizzuto et al (2021), MNRAS, 501, pp 5257-5273 Arca Sedda, M. et al, ArXiv: 2105.07003, ApJ accepted

Formation of IMBHs in young clusters

Simulation ID	Merger	σ_{YC}	M_a	M_b	q	a	e	$t_{\rm form}$	$t_{\rm gw}$
	generation	${\rm km~s^{-1}}$	${\rm M}_{\odot}$	${\rm M}_{\odot}$		$ m R_{\odot}$		Myr	\mathbf{yr}
		IN	/IBH-B	H mer	gers				
R06W9sim3	Gen-1	7	328	21	0.064	1.21	0.41	113	44
R06W9sim7	Gen-1	6	307	22	0.072	0.7	0.085	348	16
R06W9sim7	Gen-2	6	329	26	0.079	697	0.997	369	30,000
R06W6sim6	Gen-1	10	285	22	0.077	36.7	0.955	11.2	8500
		Ν	fass-gaj	p merg	gers				
R06W6sim1	Gen-1	9	28	17	0.607	337	0.999	38.6	36.7
R06W6sim1	Gen-2	9	45	25	0.556	83.4	0.99978	46.9	10
R06W6sim1	Gen-3	8	70	68	0.971	1.08	0.8927	83.9	10

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Formation of IMBHs in young clusters

Mergers in the upper mass-gap

Formation of IMBHs in young clusters

Mergers in the upper mass-gap

Formation of IMBHs in young clusters

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Mergers in the upper mass-gap: eccentricity at merger

Despite a dynamical origin, our GW190521-like mergers has e ~ 0.00036 @ 10 Hz

Why? At decoupling, the BBH is still relatively wide: Semimajor axis $\sim 1.08 \text{ R}_{SUN}$ Eccentricity ~ 0.8927

So?

Not all dynamical sources are eccentric LIGO sources!

Accretion Processes in 6/1 Galactic Nuclei

Mergers in the upper mass-gap: spin and kicks of hierarchical merger products

- 1. Extract BH masses from direct *N*-body (Gen-1a + Gen-1b)
- Sample BH spins from a distribution (Gaussian centered on 0.5 or 0.7, Uniform)
- 3. Calculate remnant mass and spin through NR fitting formulae and recoil kicks
 (e.g. Arca Sedda & Benacquista 19, Arca Sedda+20, Arca Sedda, Amaro-Seoane, Chen 2021)
 (Gen-1a + Gen-1b) → Gen-2a
- 4. Merge the remnant with the next stellar BH (Gen-2a + Gen-2b) \rightarrow Gen-3a

A triple merger leads to a final BH spin compatible with GW190521 in 60-78% of cases

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Mergers in the upper mass-gap: spin and kicks of hierarchical merger products

A triple merger leads to a final BH spin compatible with GW190521 in 60-78% of cases

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Mergers in the upper mass-gap: spin and kicks of hierarchical merger products

What environment could retain the merger remnant?

1. The timescale for the merger formation is connected with the relaxation time

 $t_{
m rlx} \propto M^{1/2} r_h^{3/2}$

2. The central escape velocity must increase

 $v_{
m esc}^2 \propto M/r_h$

3. Possible host have same $t_{\rm rlx}$ and $v_{\rm esc} > v_{\rm kick}$

Only cluster with $M_c > 3 \times 10^5 M_{\odot}$ and $R_c < 0.6$ pc can retain long merger chains

Formation of IMBHs in young clusters

IMBH-BH mergers

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Accretion Processes in Galactic Nuclei

6/8 - 09 - 2021

Accretion Processes in 6/8 Galactic Nuclei

6/8 - 09 - 2021

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Perspectives for current and future GW detectors

 $z = 0.05; D_{\rm L} = 230 {\rm Mpc}; T_{\rm obs} = 4 {\rm yr}; ({\rm S/N})_{\rm LISA} = 20 - 26$

Arca Sedda M. et al., ArXiv:2105.07003, ApJ accepted

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Perspectives for IMBH growth in dense clusters via repeated IMRI phases: a semi-analytic approach to quantify the impact of multiple IMBH-BH mergers

Accretion Processes in Galactic Nuclei

6/8 - 09 - 2021

Accretion Processes in Galactic Nuclei 6/8 - 09 - 2021

Perspectives for IMBH growth in dense clusters via repeated IMRI phases: IMBH mass and spin across cosmic times

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Perspectives for IMBH growth in dense clusters via *N*-body models (PRELIMINARY!)

DRAGON-IMBH-2	*											
on Booster cluster	N_*	M_c	R_h	f_b	$f_{ m segreg}$	$N_{\rm seed}$	$T_{\rm s}$	im	No	GW	Λ	$M_{\rm IMBH}$
N - 120 200 600 1 000k	10^{3}	$10^5 \rm ~M_{\odot}$	\mathbf{pc}	207	Seent cases pract		G	\mathbf{yr}				${\rm M}_{\odot}$
- N = 120-300-600-1,000k - Binary = 5-20% M = 150 M	120	0.7	2.2	0.2	0.5	2	1.2	1.7	3	4	102	191, 260
	300	1.7	2.2	0.2	0.5	2			1			
$-M_{MAX} = 150 M_{SUN}$	600	3.5	2.2	0.2	0.5	2						
- Mass segregation	120	0.7	1.0	0.2	0.5	2						
eliminary.	300	1.7	1.0	0.2	0.5	2						
- Sim time $\sim 0.1-2$ Gyr	120	0.7	0.6	0.2	0.5	2				N		
- $N_{GW} \sim O(100)$ - $f_{IMBH} \sim 20-30\%$	300	1.7	0.6	0.2	0.5	1			Ч	5	T	
	120	0.7	2.2	0.05	0.5	2			_			
	300	1.8	2.2	0.05	0.5	2						
	1000	5.9	2.2	0.05	0.5	2			1			

Accretion Processes in Galactic Nuclei

6/8 - 09 - 2021

Perspectives for IMBH growth in dense clusters via N-body models (PRELIMINARY!)

Accretion Processes in Galactic Nuclei

6/8 - 09 - 2021

Perspectives for IMBH growth in dense clusters via *N*-body models (PRELIMINARY!)

DRAGON-IMBH-2 on Booster cluster: mergers!

- – ~ IMBH-IMBH mergers
- - GW190521-like mergers
- – Hierarchical mergers
- - NS-BH mergers

Takehome

- ✓ Analysis of 80 *N*-body simulations of YMCs: 4 IMBH-BH mergers and 1 triple merger leading to a GW190521-like source
- ✓ Post-processing of the data to include GR for remnant mass, spin, and recoil (not included in *N*-body models)

✓ About IMBHs:

- \circ ~ The spin of the remnant depends strongly on IMBH "natal" spin
- GW kick can eject rotating IMBHs from YCs, thus preventing further growth
- GW detectors (especially the next generation) will help us in unravelling IMBH "seeds"

✓ About mass-gap mergers:

- The triple merger channel leads to a spin that match observations better than a simpler double merger. (Note: a single merger is disfavored by stellar evolution)
- The GW kick in such mergers is large (>100 km/s in 90% of the cases explored): no retention in YCs
- Only compact and massive GCs and NCs could harbour such merger chains
- Improved observations of cluster central regions could help in constraining escape velocities

\checkmark What to expect from the future

- \circ A new simulation database with N = 120-1,000k, 20% binaries, new stellar evolution, etc.. is on the way
- So far, we found several IMBHs with M > 100-300 M_{SUN} , O(100) BBH mergers, 2 NS-BH mergers

BONUS: IMBH merger rates

Accretion Processes in Galactic Nuclei 6/8 - 09 - 2021

Implications for current and future GW detectors: IMRIs cosmic merger rate

Signal to noise ratio (we set SNR = 15, observation time $T_{obs} = 4$ yr):

$$SNR^{2} = \int_{f_{1}}^{f_{2}} \frac{h_{c}^{2}(f, z_{hor})}{S_{n}^{2}(f)} df$$

□ IMRIs merger rate:

$$\Gamma_{\rm IMRI} = \Omega_s \int_{M_1}^{M_2} \int_0^{z_{\rm hor}} \frac{\mathrm{d}n_{\rm IMRI}}{\mathrm{d}M_{\rm IMBH}\mathrm{d}z} \frac{\mathrm{d}V_c}{\mathrm{d}z} \frac{\mathrm{d}z}{1+z} \mathrm{d}M_{\rm IMBH}$$

□ Number of IMRIs per unit IMBH mass (3 approaches):

Cumulative IMRIs merger rate vs. redshift

Accretion Processes in 6/8 - 09 - 2021 Galactic Nuclei

Implications for current and future GW detectors: IMRIs cosmic merger rate

Instrument	$M_{\rm SBH}$	z _{max}	M _{IMBH,max}	$\Delta\Gamma_1$
	M_{\odot}		${ m M}_{\odot}$	yr^{-1}
LIGO	10	0.38	200	0.003 - 0.54
LIGO	30	0.57	200	0.006 - 1.3
LISA	10	0.70	46240	0.024 - 5.1
LISA	30	1.78	46240	0.27 - 56.2
ET	10	6.00	2000	1.9 - 399.7
ET	30	6.00	2000	2.8 - 596.5
DECIGO	10	6.00	46240	15.0 - 3139
DECIGO	30	6.00	46240	15.0 - 3139

Nr. of detection per yr

LIGO-Virgo-Kagra: ~1-2 IMRIs with $M < 200 \text{ M} \otimes \text{ in } 1 \text{ yr of observation}$

LISA: ~5-60 IMRIs with $M < 46,000 \text{ M} \otimes \text{ in } 1 \text{ yr of observation}$

ET/DECIGO: >10³ IMRIs with M < 46,000 M \otimes in 1 yr of observation