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Three main phases during an SMBH merger

4 N
Pairing phase:
- Black holes sink under dynamical friction,;
- Proportional to background density of stars and black hole mass;
- Sinking continues until a Kepler binary is formed,;
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Hardening phase:
- Binary orbital energy loss due to 3-body encounters with stars;
- Stars are ejected via the gravitational slingshot effect;
- Stars come from a region known as the loss cone;
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Gravitational wave inspiral:
- GW emission (PN 2.5 term) becomes dominant;
- At separations of order ~ [0.001 - 0.01 pc];
- Ends with coalescence of SMBHS;
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Pairing phase:
- Black holes sink under dynamical friction;
- Proportional to background density of stars and black hole mass;
- Sinking continues until a Kepler binary is formed,;

Gravitational wave inspiral:
- GW emission (PN 2.5 term) becomes dominant;
- At separations of order ~ [0.001 - 0.01 pc];
- Ends with coalescence of SMBHSs;




Hardening phase of the merger

« Stars belong to the loss cone if their
angular momentum is low enough to
reach the center ;

L < Leyis = \(012G(Mpy)agy.

* But the loss cone is emptied within a dynamical timescale

. Not enough stars in the loss cone!

mmm) Binary stalls at ~ 7 pc separations

Final Parsec Problem




Loss Cone Refilling and solution to the FPP
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The question(s):
 How relevant are PN corrections in the hardening phase of the merger?

* How:

* Using high-performance N-body and three-body simulations for final stages
of SMBH binary coalescence in gal. nuclei

* AR-CHAIN code, Mikkola & Merritt (2006,2008)
*  @-GRAPE-hybrid code: -GRAPE+ETICS, Harfst et al. (2007); Meiron et al. (2014)



Initial conditions: System from Khan et al. (2016)

t = 18.6 Myr
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Galaxy merger at z = 3.5 followed from Argo cosmological simulation

Two SMBHs are introduced in the galactic cores and resolution is

increased M, =3 x 103 MG M =8 x10"M¢c

SMBH masses: and

Estimated merger time: t = 177 Myr since binary formation (Avramov et al. 2021)



Part 1:
Impact of PN corrections at ~1000 Ry, separations

" Avramov et al. (in prep.)



Numerical setup

A series of 3-body scattering experiments using the AR-CHAIN code

runs at and 2000 at ~ 900 R_, (GW
phase)

SMBH binary equations of motion corrected up to order 2.5PN

Star positions initialized uniformly on a spherical shell with
D= 100 pc

Star velocities generated such to guarantee close approaches:
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Newtonian energy balance of the system
* Using the Newtonian black hole orbital energy formula:
—AEpy = AE, + Egw.
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Post-Newtonian energy balance of the system

° In rea“ty EBH :ENEWF +EPN: EPN ZEPNI +EPN2+----

* Even PN terms (1PN, 2PN...) do not carry away net
energy from the system and are often omitted from
energy considerations

* The odd term 2.5PN corresponds to GW emission

* Even terms can however induce oscilations that are
relevant for studying individual interactions
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Part 2:

Properties of loss cone stars
" Avramov et al. (2021)



Initial conditions and numerical setup

/ (We monitor and identify stars stars )
. el which enter and exit the binary vicinit
* Khan et al. 2016 data initiated 10a,, ) ¢ A

during hardening phase at BH *Enables accurate investigation of
separation ~1650R.; kenergy and orbital parameter changes/
SC
* Run stopped at separation of ~
650 Rsch / \
» system slightly triaxial at all
. Particles: N= 6x106 times in the simulation
* Post-Newtonian included up to L y
PN 2.5 term
How many core and halo particles?
core particles must fullfil one of these crtieria:

* Using the @-GRAPE-hybrid code
\ rp <05R;p or 1 <Ry,

* Gives us ~2e+5 core particles




=== SMBH binary

Energv balance
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Stellar hardening completely accounts for the SMBH binary
energy evolution and all other possible effects can be neglected



Inclination of loss cone stars

] —— prograde
1014 4 retrograde
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 Most energetic encounters
show an angular momentum
sign-flip change during the
energetic interaction

 These correspond to
retrograde orbits that cross the
SMBH binary orbit and
experience a =180°scattering

1.2
1e8

 While smaller in number,
retrograde orbits are the most

energetic

e Therefore they make up for 45% of
the overall energy exchange
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Population I - result from the random motion of the SMBH around the center

Populations II-III - stars on centrophilic orbits that refill the loss cone
Population III - gets captured and is put on an eccentric orbit



Stellar populations Il

Population I - result from the random motion of the SMBH around the center

Populations II-III - stars on centrophilic orbits that refill the loss cone
Population III - gets captured and is put on an eccentric orbit

N | (AE/m) [km*s~*] | (df) [yr] | dEqum [Mokm®s™*]
Toral 13383 5.11 x 10° 153.73 7.36 x 10"
Population I | 2816 4.51 % 10° 177.57 1.77 x 10"
Population 2 | 6680 4.79 x 10° 138.95 3.33 x 10"
Population 3 | 3465 5.93 x 10° 166.94 1.95 x 10™

Potential type | Fraction of ters (% .. .
OS;?I;;C S %)+ 76.2 % of centrophilic orbits can

Axisviuneiric 333 only originate in triaxial nuclei
Triaxial 76.2




Take-home with you:

* Conservative PN terms (1PN) must be included in the energy balance
already at ~1000 R, separations

 Stellar hardening alone can resolve the FPP in triaxial, gas-poor
systems

* Most energetic interactions result in a sign-flip change in angular
momentum

* Three distinct populations found in distribution of loss cone stars

* 76% of centrophilic orbits can only originate in triaxial nuclei
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