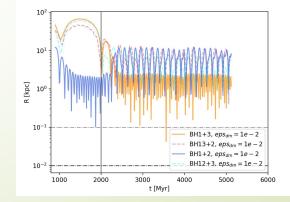


Ruprecht-Karls-Universität Heidelberg

Zentrum für Astronomie Astronomisches Rechen-Institut Heidelberg



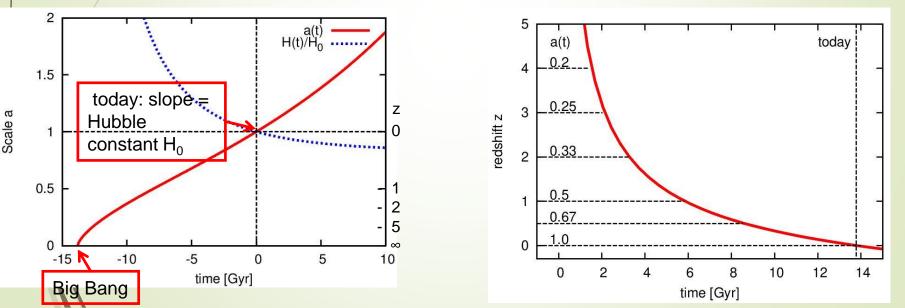
Third Volkswagen Foundation Trilateral Meeting, 6.-8.9.2021 On the formation and evolution of triple SMBHs in the IllustrisTNG cosmology Andreas Just

Branislav Avramov, Peter Berczik, Manuel Arca-Sedda

IllustrisTNG

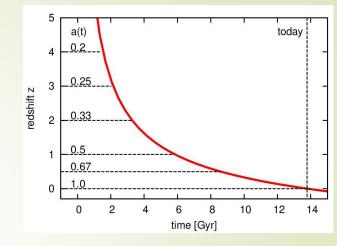
- TNG-100 simulation
- Selection of Triple systems
- > N-body simulations
 - Initial conditions
 - Bonsai simulations
 - Results

Project goals


- Broad goal: use cosmological simulation data as starting point for high-resolution N-body runs of SMBH triple evolution including Post-Newtonian effects and GW-induced coalescence
- Specific goal: Identify triple SMBH mergers in IllustrisTNG-100 and construct (spherical) galaxy models based on radial density profiles
- Then, follow the triple galaxy mergers and SMBH evolution using ~30 million particle runs

Cosmological simulations in standard ACDM

Calculations done in co-moving coordinates

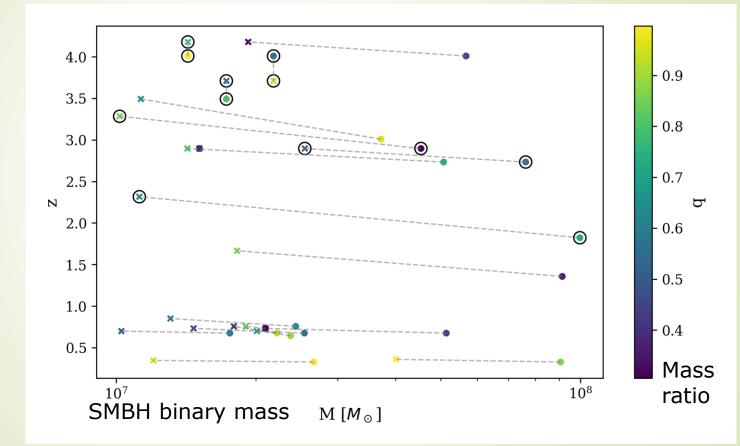

Scaling to physical units using a(t) (distances, densities)

z=5: t=1.2 Gyr; z=2: 3.3 Gyr; z=1: 5.9 Gyr

IllustrisTNG-100

- Magnetohydrodynamics (Arepo)
- Improved AGN feedback
- Simple SMBH physics
 - Fixed at potential minimum
 - Seed BH mass: $1.8 \times 10^{6} M_{sun}$ when $M_{gal} > 7.4 \times 10^{10} M_{sun}$
 - Growth by Bondi accretion
 - Immediate mergers of SMBHs at distances smaller than resolution limit of 250...750pc (z=5...0)

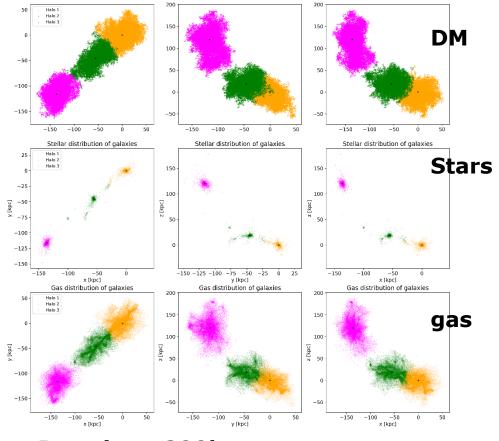
- Resolution
 - $-M_{DM}=7.5\times10^{6}M_{sun}$
 - $-M_b = 1.4 \times 10^6 M_{sun}$
 - ε_{DM,*} =1ckpc/h (=750pc at z<1)
 - $\varepsilon_g = \varepsilon_{DM,*}/4$
 - 100 snapshots


Movie: early type gal. Form. A. Just Galaxy formation and merger trees FoF halo finder for DM Baryons: next DM part. Parent subhalos merged, if $m_1/m_2 > 1/5$ Maśses are maximum masses in the past BH merger tree useless Parent galaxy ID missing Own search in snapshots Subhalo finder

Credit: https://www.tng-project.org/

Selection of triple systems

- z=0: dominant halos, gas <20%, M_{BH}>10⁷M_{sun}
 result: 8000 halos
- Merger tree: all halos with particles of final halo
 - Maximum BH mass in the past, mass ratio q>0.3
 - Minimum 2 mergers at z<6</p>
- Triples for LISA: M_{BH} = 10⁷-10⁸M_{sun}
 - At least 2 mergers in 1 Gyr
 - Result: 20 candidates
 - In 9 cases progenitor history not well defined
 - Finally: 6 cases with progenitors N*>1000

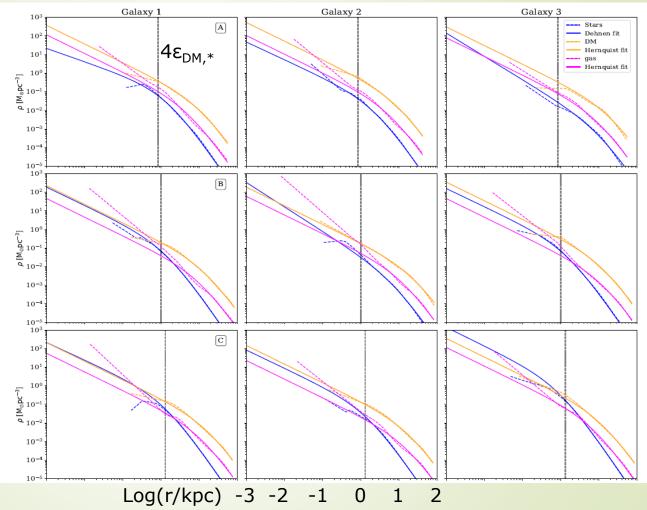

Triple candidates: 6 cases with circles

A. Just

Initial conditions

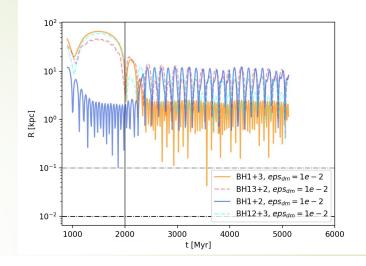
- Data 4 snapshots before first merger
- Spherical components
 - DM, gas: Hernquist
 - Stars: Dehnen
 - Unresolved inner 1kpc ignored
 - AGAMA package
 - 30 million particles

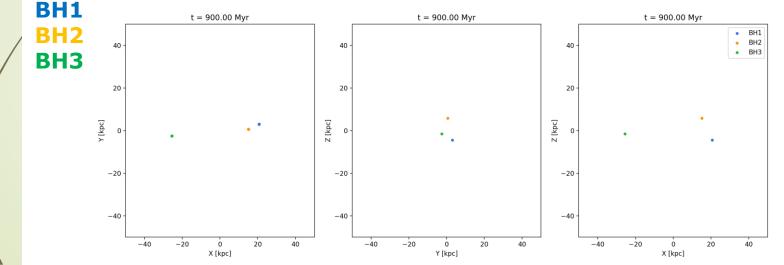
Case C: X,Y,Z proj.; galaxy 1, 2, 3


Box size ~200kpc

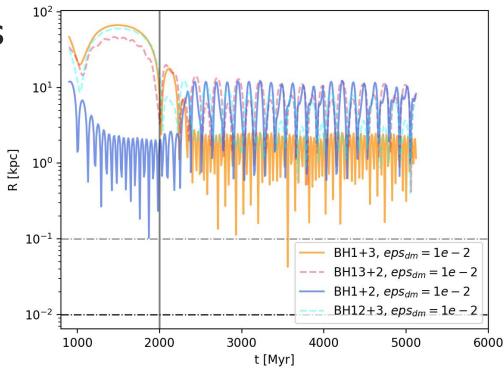
Rows: cases A,B,C: col: galaxy 1,2,3; stars, DM, gas

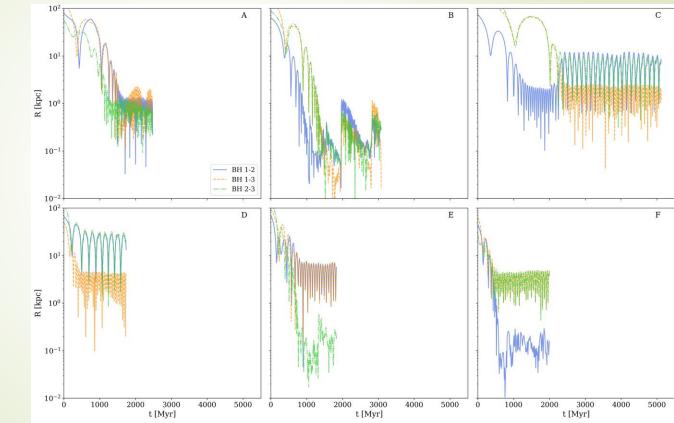
Profile fits In log-log


A. Just


Data: dashed Fit: full lines

Results: case C


- Stalling at a=1kpc on eccentric orbit
- BH 2+3 exchange at t=2.4Gyr
- Then stalling BH 1+3, still unbound


Results: checks

- LU = 1kpc
- TU = 10 Myr
- eps_dm = eps_g = 1e-2
- eps_st = 1e-3
- dt = 1e-3
- Runs with dt = 1e-4 show same result
- Result confirmed by Peter
 N~15 million
 - different tree code
- phi-GPU runs also show stalling

All 6 cases: similar results

Dynamical friction ineffective Resolution issue in **TNG-100** density too low? Harmonic core?

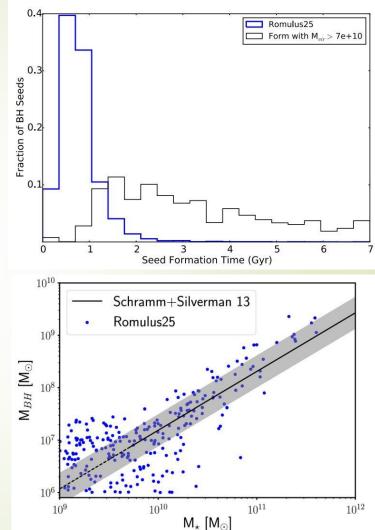
Density profiles at the end of simulations

С

F

 10^{-1}

r[kpc]


100

101

В А Constant 10^{1} density cores 10^{0} [W₀/bc³] Harmonic potential 10^{-2} All stars (DM) 10^{-3} DM in resonance stars D Е Dynamical 10^{1} friction subpressed 10^{0} ρ [M₀/pc³] 10^{-2} DM stars 10^{-3} gas 10^{-4} 10-3 10^{-2} 10^{-1} 100 101 $10^{2}10^{-3}$ 10^{-2} 10^{-1} 100 101 10²10⁻³ 10^{-2} r[kpc] r[kpc]

ROMULUS25 simulation

- Tremmel et al. 2017 (MNRAS 470, 1121)
- TREE+SPH code ChaNGa
- Improved SMBH physics
 - SMBHs form in high density, low metallicty, 10K gas cells
 - subgrid dynamics by analytic dynamical friction eq.
 - Density dependent and rotation corrected Bondi-Hoyle accretion
 - Mergers, if closer then resolution and dynamically bound

Conclusions and outlook

- Is stalling in SMBH pairs the normal case and the formation of hard binaries the exception?
 - As a consequence triple and multiple SMBH systems as well as free floating SMBHs should be frequent
- Is the low central density still a caveat of cosmological simulations?

Enhanced densities by cusps and nuclear star clusters are not resolved in cosmological simulations

Next step: test with different cosmology: ROMULUS

SMBH physics better modeled

 Redshift and fitting parameters

id	j	z_0	M _{bh}	M _{st}	γst	a _{st}	M _{dm}	a _{dm}	$M_{\rm g}$	a _g
			$[10^{6} M_{\odot}]$	$[10^9 M_{\odot}]$		[kpc]	$[10^{11}M_\odot]$	[kpc]	$[10^{10}M_{\odot}]$	[kpc]
Α	1	5.23	1.37	1.54	0.71	1.47	1.98	11.31	1.45	5.5
Α	2	5.23	1.31	1.61	0.95	2.36	2.04	9.66	1.71	6.27
Α	3	5.23	2.3	6.2	1.25	10.27	5.06	19.99	3.1	9.67
В	1	4.18	1.45	1.71	0.98	1.39	2.27	15.51	2.58	11.6
В	2	4.18	1.55	4.89	1.31	7.52	5.21	25.78	4.59	13.56
В	3	4.18	1.53	1.91	0.98	1.55	2.63	13.46	3.36	13.27
С	1	2.9	1.9	2.15	0.95	1.29	2.97	18.49	3.25	11.81
С	2	2.9	2.13	1.03	0.98	1.58	2.42	19.9	2.71	16.92
С	3	2.9	2.8	4.55	1.00	0.89	2.53	13.18	2.70	7.54
D	1	4.7	1.7	13.32	1.00	1.09	11.17	18.46	10.99	8.6
D	2	4.7	1.29	2.05	1.31	3.82	6.78	25.96	10.56	28.53
D	3	4.7	1.64	8.67	1.49	5.88	11.27	23.82	13.87	16.88
E	1	3.71	1.69	7.81	1.12	3.88	25.41	41.49	17.65	20.17
E	2	3.71	1.35	5.02	0.98	1.49	8.61	19.01	6.43	9.26
E	3	3.71	1.6	9.10	0.98	1.61	20.23	31.64	11.92	12.21
F	1	5.00	1.65	7.91	1.31	4.20	8.91	18.79	11.04	13.60
F	2	5.00	1.62	3.38	0.97	1.63	4.25	13.85	5.04	9.32
F	3	5.00	1.79	2.51	0.89	2.67	5.48	17.32	4.68	10.94

Particle masses and numbers

1.1		NT		NT		NT		NT
id	j	N _{tot}	$m_{\rm st}$	N _{st}	$m_{\rm dm}$	N _{dm}	$m_{ m g}$	N_{g}
		$[\times 10^{6}]$	$[M_{\odot}]$	$[\times 10^{6}]$	$[M_{\odot}]$	$[\times 10^{6}]$	$[M_{\odot}]$	$[\times 10^{6}]$
Α	1	7.0105	1030	1.5048	41,200	4.8032	20,600	0.7025
Α	2	7.3415	1030	1.5596	41,200	4.9507	20,600	0.8312
А	3	19.809	1030	6.0153	41,200	12.290	20,600	1.5037
В	1	8.4419	1030	1.6613	41,200	5.5283	20,600	1.2623
В	2	19.625	1030	4.7512	41,200	12.645	20,600	2.2287
В	3	9.883	1030	1.8574	41,200	6.3952	20,600	1.6304
С	1	10.867	1030	2.0911	41,200	7.1986	20,600	1.5778
С	2	8.1909	1030	1.0016	41,200	5.8717	20,600	1.3176
С	3	11.865	1030	4.4162	41,200	6.1357	20,600	1.3128
D	1	13.226	2060	6.4680	206,000	5.4233	82,400	1.3343
D	2	5.5686	2060	0.9935	206,000	3.2939	82,400	1.2812
D	3	11.364	2060	4.2079	206,000	5.4721	82,400	1.6839
Е	1	18.266	2060	3.7905	206,000	12.334	82,400	2.1417
E	2	7.3996	2060	2.4386	206,000	4.1806	82,400	0.7805
Е	3	15.687	2060	4.4170	206,000	9.8231	82,400	1.4471
F	1	9.5089	2060	3.8419	206,000	4.3273	82,400	1.3396
F	2	4.3166	2060	1.6404	206,000	2.0647	82,400	0.6115
F	3	4.4472	2060	1.218	206,000	2.6612	82,400	0.5681