
12 Monte Carlo Techniques

12.1 Monte Carlo Integration

So-called Monte Carlo integrations lie at the heart of many stochastic simulation
methods. The basic idea can be intuitively understood with the “dartboard method”
of integrating the area of an irregular domain.

This works as follows:

• Choose points randomly (i.e. uniformly) within the box.

• We know that the probability that a point hits inside the area is proportional
to the ratio of the areas:

p(dart hits inside area) =
Ashape

Abox

(12.1)

• We can now approximate this probability, and hence the area ratio, through
the experimental result:

Ashape

Abox

' #hits in shape

#hits in box
(12.2)

This is expected to become arbitrarily accurate as the number of trials goes
to infinity.

Standard Monte Carlo integration

Let us now formalize this technique. We consider an integral in d-dimensions,

I =

Z

V

f(x) ddx, (12.3)

where V is a d-dimensional hypercube with (for simplicity) dimensions [0, 1]d. To
compute this as a Monte Carlo integral, we do the following:

109



12 Monte Carlo Techniques

1. Generate N random vectors 0  xi  1 with flat distribution (i.e. each com-
ponent of the vector is drawn independently from a uniform distribution).

2. We compute

IN =
V

N

NX

i

f(xi). (12.4)

For N ! 1, we then get In ! I.

3. The error of the result scales as 1/
p
N , independent of the number of dimen-

sions of the integral.

Especially the last point is quite remarkable – we’ll later have to look at this in
more detail. Before we do this, it is instructive to compare with the steps taken in
standard integration techniques. In them, we divide each dimension in n regularly
spaced points. The total number of points is hence N = nd. Depending on the
integration rule selected, the error will then scale as some power of 1/n. For example,
for the midpoint and trapezoidal rules, it will simply be / 1/n2, and for Simpson’s
rule / 1/n4.
If d is small, it is clear that the Monte Carlo integration has much larger errors

than standard methods when the same N is used. However, the higher d becomes,
the better Monte Carlos looks because then the standard method can spend com-
paratively fewer regular sampling points per dimension.
One can then for example ask: At what point is Monte Carlo as good as Simpson?

Well, Simpson’s error should scale as

1

n4
=

1

N4/d
, (12.5)

which starts to decline with N more weakly than Monte Carlo integration when
d � 8. We hence clearly see that high dimensional problems are the regime where
Monte Carlo integration becomes particularly interesting.
In fact, in some lattice simulations one has dimensions in the range d = 106 �

1010. Here the only viable approach is to use Monte Carlo integration. In practice,
standard methods fail already at much more moderate numbers of dimensions. For
example, even with d = 10, putting down just a grid with n = 10 cells per dimension
already yields a number of N = 1010 grid points.

12.2 Error in Monte Carlo integration

Let yi = V f(xi) be the value of the i-th function evaluation of our Monte Carlo
integration. After N samples, we can thus write the approximation to the desired
integral as

IN =
y1 + y2 + . . .+ yN

N
(12.6)

110



12.2 Error in Monte Carlo integration

The error of this quantity is defined as the width of its probability distribution
PN(IN), i.e.

�2
N ⌘ ⌦I2N

↵� hINi2 . (12.7)

Let’s try to calculate this in order to get an idea of the size of this error. First, let’s
introduce the probability distribution of the yi, denoted with p(y). For it we have

Z
p(y) dy = 1, (12.8)

hyi =
Z

y p(y) dy, (12.9)

⌦
y2
↵
=

Z
y2 p(y) dy, (12.10)

�2 =
⌦
y2
↵� hyi2 . (12.11)

We can then write

PN(IN) =

Z
�

 
IN �

X

i

yi
N

!
p(y1) p(y2) · · · p(yN) dy1 dy1 · · · dyN , (12.12)

where the Dirac delta-function enforces that the average of the yi is equal to IN .
We now take the Fourier transform of p(y):

p̂(k) =

Z
p(y) eik(y�hyi) dy (12.13)

Similarly, let’s consider the Fourier transform of PN(IN):

P̂N(k) =

Z
PN(IN) e

ik(IN�hIN i) dIN (12.14)

=

Z
p(y1) · · · p(yN) ei k

N (y
1

�hy
1

i+ y
2

�hy
2

i+ ...+ yN�hyN i)dy1 · · · dyN (12.15)

=


p̂

✓
k

N

◆�N
. (12.16)

Here we made use of hINi = hyi. Now we expand p̂
�

k
N

�
in powers of k/N , in the

limit of large N . We get

p̂

✓
k

N

◆
=

Z
p(p) ei

k
N (y�hyi) dy (12.17)

=

Z
p(y)


1 +

ik

N
(y � hyi)� k2

2N2
(y � hyi)2 + . . .

�
dy (12.18)

= 1� k2�2

2N2
+ . . . (12.19)

111



12 Monte Carlo Techniques

Thus we find

P̂N(k) =


p̂

✓
k

N

◆�N
=

✓
1� k2�2

2N2

◆N

' 1� k2�2

2N
' e�

k2�2

2N , (12.20)

because N is very large. With this result in hand, we can now use it to calculate
PN(IN) through an inverse Fourier transform:

PN(IN) =
1

2⇡

Z
e�ik(IN�hIN i) P̂N(k) dk (12.21)

=
1

2⇡

Z
e�

k2�2

2N �ik(IN�hIN i) dk (12.22)

=
1

2⇡
e�

1

2

N
�2

(IN�hyi)2
Z

e�
�2

2N (k+i(IN�hyi) N
�2

)
2

dk (12.23)

We now can do this integral by shifting k and recalling
Z

exp(�↵x2) dx =

r
⇡

↵
, (12.24)

obtaining

PN(IN) =

p
Np
2⇡�

exp

✓
�1

2

N

�2
(IN � hyi)2

◆
. (12.25)

This is a Gaussian with dispersion �N = �/
p
N , independent of the shape of p(y).

What we just have derived is the central limit theorem! Independent of the detailed
shape of p(y), if we average enough of these distributions we will get a Gaussian.

Summary:

For standard Monte Carlo integration with N samples, the error is

�N = V

s
hf 2i � hfi2

N
(12.26)

where hfi and hf 2i are exact moments of the function we integrate, i.e.

hfi ⌘ 1

V

Z
f(x)dx =

1

V

Z
y p(y)dy. (12.27)

In practice, we can estimate these moments from the Monte-Carlo samples them-
selves, i.e. we can estimate

hfi ' 1

N

X

i

f(xi), (12.28)

⌦
f 2
↵ ' 1

N

X

i

f 2(xi), (12.29)

and then use these moments to estimate the error.

112



12.3 Importance Sampling

12.3 Importance Sampling

One common problem in Monte Carlo integration is that often the integrand is very
small on a dominant fraction of the integration volume. For example, if the integrand
is sharply peaked, only points sampled close to the peak will give a significant
contribution.

The idea of importance sampling is to choose the random points somehow
preferentially around the peak, and putting less points where the integrand is small.
This should be more e�cient and help to reduce the error for a given number of
points.
So let us assume we want to integrate

I =

Z

V

f(x) dx, (12.30)

and suppose we choose a distribution p(x) which is close to the function f(x),
but which is simple enough so that it is possible to generate x-values from this
distribution. We can then write:

I =

Z

V

p(x)
f(x)

p(x)
dx. (12.31)

Thus, if we sample points around a point x with probability dp = p(x) dx (which is
exactly the definition of sampling from the distribution p(x)), we simply obtain:

I = lim
N!1

1

N

X

i

f(xi)

p(xi)
. (12.32)

Because f/p is flatter than f if the shape of p is similar to that of f , the variance
of f/p will be smaller than the variance of f , i.e. we obtain a smaller error for given
N . The ideal choice is p(x) / f(x). This is often not possible in practice, but in
fact possible in lattice Monte Carlo simulations, as we will see.

Example for importance sampling

Let’s consider a simple 1D integration to demonstrate the concept of importance
sampling. The integral we want to compute is:

I =

Z 1

0

⇣
x�1/3 +

x

10

⌘
dx. (12.33)

113



12 Monte Carlo Techniques

This can be solved analytically and has the value I = 31/20 ' 1.55, so we don’t
really need Monte Carlo integration here, but for the sake of demonstrating the
method we apply it anyway.
Doing this integral with standard Monte Carlo integration gives the error

�N =

s
hf 2i � hfi2

N
' 0.85p

N
. (12.34)

Let’s now try to do it with importance sampling, using the sampling probability

p(x) =
2

3
x�1/3 (12.35)

over the interval 0 < x  1, based on the realization that p(x) captures part of the
shape of f(x), while being simple enough to allow a creation of properly sampled
points by direct inversion (see below). The new function to integrate is then g = f/p,
and the width of the corresponding Monte Carlo error distribution function becomes

�N =

s
hg2i � hgi2

N
' 0.045p

N
. (12.36)

This is nearly 20 times better than obtained with plain sampling, hence a substantial
gain in e�ciency has been reached.

12.4 Random number generation

Good random number obviously play a central role in Monte Carlo techniques.

• Usually they are produced by deterministic algorithms leading to pseudoran-
dom numbers.

• Such pseudorandom numbers need to be distinguished from “truly random”
numbers generated by some physical process (like rolling the dice, radioactive
decay, quantum transitions, etc.). Some modern CPUs include a hardware
random number generator, based for example on coupled non-linear oscillators
and additional sources of entropy. However, these generators are normally not
used for Monte Carlo techniques, because

– the sequence is not repeatable, making debugging di�cult and preventing
exact reproducibility

– the generators are often slow

– the quality of the distribution may not be perfect

– the quality of the distribution may degrade with time, or correlate in
subtle ways with environmental factors such as operating temperature,
etc.

114



12.4 Random number generation

• There is value in having good random numbers. In 1950, the RAND corpo-
ration published a book entitled “1 million random digits”, whose primary
virtue is to contain no discernable information at all. This classic is available
online (http://www.rand.org/publications/classics/randomdigits).

12.4.1 Pseudo-random numbers

Here we usually create an integer sequence that is then converted to a floating point
number in the interval [0, 1[. The essential desirable properties of a good random
number generator are:

• Repeatability: For the same seed, we want to obtain the same sequence of
random numbers.

• Randomness: Good random numbers should

– be uniformly and homogeneously distributed in the interval [0, 1[.

– be independent of each other, i.e. show no correlations whatsoever (this
is di�cult and not true exactly for pseudo-random number generators)

• Speed: In modern applications, we may need billions of random numbers.

• Portability: We want the same results on di↵erent computer architectures.

• Long period: After a finite number of pseudo-random numbers, the sequence
repeats. This period should be as large as possible.

• Insensitivity to seed: Neither the period nor the quality of the randomness
should depend on the value of the seed, i.e. on where the sequence is started.

Linear congruential generators

The simplest pseudo-random number generators work with an integer mapping of
the form

Xi+1 = (aXi + b) mod m, (12.37)

where a, b, and m are integers. The numbers Xi lie then in the range [0,m� 1] and
can be mapped to floating point numbers in the unit interval by dividing with m.
It is clear that such a generator can have a period of at most m. Examples for such
linear congruential generators include:

• ANSI-C:
a = 1103515245 b = 12345 m = 231 (12.38)

The period here is quite small, just m = 231 ⇠ 2 ⇥ 109, which is quickly
reached in modern computers. This is not good enough for serious Monte
Carlo applications.

115



12 Monte Carlo Techniques

• RAND generator in Matlab:

a = 16807 b = 0 m = 231 � 1 (12.39)

Again, this has an uncomfortably short period.

• UNIX drand48():

a = 25214903917 b = 11 m = 248 (12.40)

This is starting to be somewhat usable, with a period of 248 ' 2.8 ⇥ 1014.
Note however that the low order bits have shorter cycling times and show less
randomness than they should, which is a common problem for all simple linear
congruential random number generators.

• NAG-generator:
a = 1313 b = 0 m = 259 (12.41)

This has a very long period, but the low order bits are still not very good.

To get better random numbers, one needs to go to more complicated schemes
than a simple integer mapping. One approach is to combine two or several linear
congruential mappings. This is done for example in ran2 of Numerical Recipes.
This uses

Xi+1 = (40014Xi) mod 2147483563 (12.42)

Yi+1 = (40692Yi) mod 2147483399 (12.43)

Zi+1 = (Xi + Yi) mod 2147483563 (12.44)

The Zi are then mapped to floating point numbers. Here the period is extended to
⇠ 1018.

Lagged Fibonacci generators

A refinement of this approach consists of using several integers to define the internal
state of the generator. One then uses a prescription of the form

Xi = (Xi�p �Xi�q) mod m (12.45)

to create new integers, where p and q are the ‘lags’ (o↵sets to other past numbers),
and � is some arithmetic operation, for example addition, multiplication, etc., or
also bitwise logical operations such as XOR. For large lags, the quality of these
generators becomes very good.
For example, RANLUX is of this type, reaching a period 10171. Another modern

generator using this principle is the Mersenne Twister, also known as MT19937.
This uses 624 internal 32-bit integers to describe its state, and abundantly employs
XOR as well as other bit-shu✏ing and swapping operations. It’s period is huge, a
staggering 219937 � 1. This should be a pretty good choice for Monte Carlo! The
Mersenne Twister is for example available in the GSL-library.1

1
http://www.gnu.org/software/gsl

116



12.5 Using random numbers

12.5 Using random numbers

Random numbers are usually generated in the standard interval [0, 1[ with a uniform
distribution. If that’s what you need – fine. But often we need random numbers
drawn from some other probability distribution function (e.g. a Gaussian). How is
this done?

12.5.1 Exact inversion

Recall, the PDF satisfies
R
p(x) dx = 1 and p(x) � 0 for all x. Such probability

distributions can be transformed to other distributions by observing conservation of
probability:

p1(x) dx = p2(y) dy (12.46)

where y = y(x). This leads to the transformation rule

p2(y) = p1(x)

����
dy

dx

���� , (12.47)

where here a modulus has been added to neutralize a possible sign change due to
the mapping. This can now be used as follows: Suppose we know p1(x) (usually the
distribution returned by our random number generator, in which case p1(x) = 1)
and we have a desired distribution p2(y), then we need to find the mapping y = y(x)
that transforms one into the other. We can obtain this by integrating the di↵erential
equation Z x

�1
p1(x

0) dx0 =

Z y

�1
p2(y

0) dy0. (12.48)

This is simply saying that P1(x) = P2(y), where P1(x) and P2(y) are the cumulative
probability distribution functions of p1 and p2, respectively. Hence, we need to
calculate

y = P�1
2 [P1(x)] . (12.49)

In case p1(x) is an ordinary random number generator, this can also be written as

x =

Z y

�1
p2(y

0) dy0. (12.50)

Unfortunately, the inversion cannot always be carried out algebraically, but if this
is possible, this is the method of choice.

Example

Suppose you want to have random numbers from the distribution

p(y) =
1

4
y3 for y 2 [0, 2]. (12.51)

117



12 Monte Carlo Techniques

The cumulative distribution is here

P (y) =

Z y

0

y03

4
dy0 =

y4

16
. (12.52)

Hence, we can draw random numbers uniformly from x 2 [0, 1[ and concert them to

y = (16x)1/4, (12.53)

which then sample our desired distribution function.

Important special cases

The Gaussian distribution

p(y) =
1p
2⇡

exp

✓
�y2

2

◆
(12.54)

is often needed. The cumulative distribution is the error function, which can not be
easily inverted without resorting to iterative (and hence comparatively expensive)
methods.
There is however a simple trick, known as the Box-Muller method, that can cir-

cumvent this issue. Suppose we consider generating a 2D Gaussian distribution

p(x, y) =
1

2⇡
exp

✓
�x2 + y2

2

◆
, (12.55)

which is simply the product of two 1D-distributions. We can transform this to polar
coordinates in the (x, y)-plane:

p(x, y) dx dy =
1

2⇡
exp

✓
�r2

2

◆
r dr d�. (12.56)

Hence � is uniformly distributed in [0, 2⇡[, i.e.

� = 2⇡ ·X1 (12.57)

for some standard random number X1 from the unit interval. For the radial coordi-
nate we have on the other hand:

X2 =

Z r

0

r0 exp

✓
�r02

2

◆
dr0 (12.58)

This can be integrated and inverted to yield

r =
p
�2 lnX2, (12.59)

where X2 is again a random number independently drawn from [0, 1[. Finally, we
can calculate

x = r cos�, (12.60)

y = r sin�, (12.61)

which now yields two perfectly fine Gaussian distributed numbers x and y, which
may both be used. This procedure hence always converts two random numbers from
[0, 1[ to two independent Gaussian distributed numbers.

118



12.5 Using random numbers

12.5.2 Rejection method

Assume that p(x) is the desired random number distribution, and f(x) is the dis-
tribution that we can create. If we have

p(x)  C · f(x) (12.62)

with some known constant C, then we can generate random numbers that sample
p(x) with the rejection method. This method works as follows:

1. Generate an x from f(x).

2. Generate a y from a uniform distribution with the bounds 0  y < C · f(x).
3. If y  p(x) return x as a sample value.

4. Otherwise, i.e. for y > p(x) reject the trial value for x and repeat at step 1.

The probability dq to get a certain x within dx with this procedure is:

dq = f(x)dx · p(x)

Cf(x)
=

1

C
p(x) dx / p(x) dx. (12.63)

Hence this will reproduce the desired probability distribution.

There are a number of advantaged of this approach, in particular, it works in
any dimension, and p(x) does not necessarily have to be normalized. The main
disadvantage can lie in a low e�ciency if the rejection rate is high. The latter is
given by the complement to the acceptance rate, which is given by the area under
p(x) relative to the area under Cf(x).

Example

Let’s assume we want to distribute points uniformly on a sphere. The standard way
is to use direct inversion. In 3D, this is still readily possible by the use of spherical
polar coordinates. We have for the surface element

sin ✓ d✓ d� = d cos ✓ d�, (12.64)

119



12 Monte Carlo Techniques

hence the distributions of d cos ✓ and d� are uniform over their range. Hence we can
set

cos ✓ = 2u1 � 1, (12.65)

� = 2⇡u2, (12.66)

where u1 and u2 are standard uniform numbers. We can then calculate the coordi-
nates as

x = sin ✓ cos�, (12.67)

y = sin ✓ sin�, (12.68)

z = cos ✓. (12.69)

This is fine, but cumbersome to generalize to hyperspheres in higher dimensions. A
much simpler approach is to use rejection sampling. Suppose we draw three random
numbers u1, u2, and u3, which we then map to [�1, 1] through ũi = 2ui�1. Now we
calculate r2 = ũ2

1+ ũ2
2+ ũ2

3, and use the rejection method: We only keep the point if
r2  1, which e↵ectively uniformly samples the inside of a sphere. If we then stretch
the kept points as

x =
ũ1

r
, y =

ũ2

r
, z =

ũ3

r
, (12.70)

they are uniformly distributed on the unit sphere. This method works for any
number of dimensions.

12.5.3 Sampling with a stochastic process

There are situations when neither direct inversion nor the rejection method can be
readily used to sample from a given distribution function p(x). In this case we
can construct a sample of p(x) through a stochastic process that has p(x) as its
equilibrium distribution.
We will accomplish this with a so-calledMarkov process, which generates a Markov

chain. A Markov chain is a discrete sequence of states,

x1
f��! x2

f��! x3
f��! . . .

f��! xn, (12.71)

where f is a Monte Carlo update operator. The characterizing property of a Markov
process is that the transition probability from one state to the next state in the chain,

Wf (x ! x0) = Wf (x
0|x), (12.72)

depends only on the current state, i.e. information about the history is not used at
all. Note that f can here mediate a small update or an arbitrarily large one.
The transition probability has the natural properties

Z
Wf (x ! x0) dx0 = 1, (12.73)

120



12.5 Using random numbers

and Wf (x ! x0) � 0.
We can also apply the transition probability to whole probability distributions,

getting the new probability distribution after one transition:

p(x)
f��! p0(x0) =

Z
p(x)Wf (x ! x0) dx. (12.74)

We will now demand two properties of the update step that will turn the Markov
process into a very powerful tool:

1. f must preserve peq(x) as an equilibrium distribution of the stochastic process,
or in other words peq(x) must be a fix point of f . This requires

peq(x
0) =

Z
peq(x)Wf (x ! x0) dx. (12.75)

2. Starting from any state x, repeated applications of f must be able to get
arbitrarily close to any other state x0. This is called the ergodic property.

Two important results follow from these properties:

• Any ensemble of states approaches the equilibrium distribution if f is applied
su�ciently often.

• The collection of states in a single Markov chain under the action of f ap-
proaches p(x) as the number of steps goes to infinity.

Let us proof the first of these results. To this end, let p(x) be the PDF of the initial
ensemble, and peq(x) the equilibrium distribution. After applying f once, we obtain
p0(x0). We now want to show that p0 is closer to peq than p. To this end, we consider
the norm

||p0 � peq|| ⌘
Z

|p0(x0)� peq(x
0)| dx0 (12.76)

=

Z
dx0
����
Z

dxWf (x ! x0)(p(x)� peq(x))

���� (12.77)


Z

dx0
Z

dxWf (x ! x0) |p(x)� peq(x)| (12.78)

=

Z
dx |p(x)� peq(x)| (12.79)

= ||p� peq||. (12.80)

For the third line, we have basically used the triangle inequality, |a+ b|  |a|+ |b|.
Thus, the di↵erence between p and peq shrinks if f is applied. But, perhaps ||p�peq||
gets stuck at some finite value and doesn’t really go to zero. This would mean that
there must be another fix-point p̃eq with ||p̃eq�peq|| > 0, and ||p̃0eq�p0eq|| = ||p̃eq�peq||.

121



12 Monte Carlo Techniques

However, the ergodicity property of the mapping f implies that there are some x0

for which
����
Z

dxWf (x ! x0)(p̃eq(x)� peq(x))

���� <
Z

dxWf (x ! x0) |p̃eq(x)� peq(x)| . (12.81)

This is because if A is the set for which p̃eq(x)� peq(x)  0, and B the set for which
p̃eq(x)�peq(x) > 0, then there must be some x0 from B and some x from A for which
we have a non-zero Wf (x ! x0) > 0, otherwise the two sets would be isolated from
each other, violating the ergodic assumption. On the other hand, for the norm of
||p̃0eq � p0eq|| we get

||p̃0eq � p0eq|| =

Z
dx0 |p̃0(x0)eq � p0eq(x

0)| =
Z

dx0
����
Z

dxWf (x ! x0)(p̃(x)eq � peq(x))

����

<

Z
dx0
Z

dxWf (x ! x0) |p̃(x)eq � peq(x)| (12.82)

=

Z
dx |p̃(x)eq � peq(x)| = ||p̃eq � peq||, (12.83)

where for establishing the <-sign we used equation (12.81). The conclusion reached
here, ||p̃0eq � p0eq|| < ||p̃eq � peq||, contradicts the existence of two equilibrium distri-
butions.

Detailed balance

Almost all of the commonly used update steps follow the detailed balance con-
dition, i.e.:

peq(x) ·Wf (x ! x0) = peq(x
0) ·Wf (x

0 ! x). (12.84)

Here it is obvious and easy to show that peq(x) is a fix point under f , while for other
choices of f this may still be the case but could be di�cult to prove.
So detailed balance and ergodicity are already su�cient conditions to obtain a

Markov chain that samples peq(x). But we still need to find a concrete realization
of Wf .

12.5.4 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm provides a simple and generic way for construct-
ing a suitable transition operation. It works as follows:

1. When the currents state is x, propose a new state x0 with a proposal probability
q(x ! x0).

2. Calculate the Hasting’s ratio

r = min

✓
1,

p(x0) q(x0 ! x)

p(x) q(x ! x0)

◆
, (12.85)

where the min-operation is used to restrict the value of r to the range [0, 1].

122



12.5 Using random numbers

3. Accept the proposed move with probability r (i.e. draw a random number
u 2 [0, 1[, and if its smaller than r, accept), in which case x0 is made the next
element in the Markov chain. Otherwise, the proposed state is rejected, and
the old state is added (again) as an element in the Markov chain. This is
sometimes called the Metropolis rejection step.

Does the Metropolis algorithm fulfill detailed balance? We can check this by
working out the transition probability W (x ! x0), which is the product of the
proposal probability of the new state and its acceptance probability:

W (x ! x0) = q(x ! x0) · p(x
0) q(x0 ! x)

p(x) q(x ! x0)
=

p(x0)

p(x)
q(x0 ! x). (12.86)

Here we have assumed without loss of generality that the Hastings ratio is less than
1. In this case, the inverse transition is then simply given as

W (x0 ! x) = q(x0 ! x) · 1 (12.87)

Combining equations (12.86) and (12.87) we then verify the condition of detailed
balance.
The proposal probability q(x ! x0) is fairly arbitrary – it only must be ergodic,

i.e. all states must be reachable through successive applications of q, then the Monte
Carlo Markov Chain (MCMC) created by the algorithm will eventually produce a
fair sample of the target distribution function p(x). This is a quite remarkable
property.

Metropolis update

This is the special case in which the stochastic proposal operator is symmetric, i.e.

q(x ! x0) = q(x0 ! x). (12.88)

Then the acceptance probability simply becomes

r = min

✓
1,

p(x0)

p(x)

◆
. (12.89)

A proposed move to a state of higher probability is hence always accepted. (But
one sometimes also moves to a proposed state of lower probability.)
The simplest form of such a symmetric update would be something like

q(x ! x0) : x0 = x+ e, (12.90)

where e is distributed symmetrically around zero and is independent of x. For
example, e could be drawn from a normal or uniform distribution of some prescribed
width.

123



12 Monte Carlo Techniques

Example

Let’s come back to our starting point, the generation of a sample from a distribution
p(x) with a stochastic process. For simplicity, we want to try this out on a simple
Gaussian distribution, p(x) / exp(�x2/2), using the Metropolis algorithm. As a
proposal function, we could for example choose q(x0|x) : x0 = x + (2u � 1)/10,
where u is drawn uniformly from [0, 1[. Then we could proceed like this:

1. Start with some x with p(x) > 0.

2. Draw u and calculate the proposal x0.

3. Now compute r = min [1, exp(�x02/2)/ exp(�x2/2)].

4. Draw another random number u0 from [0, 1[ and take x0 as new point in the
chain if u0  r, otherwise take x as new point.

5. Repeat at step 2 until you believe you have enough points in the chain.

Note that there can be lots of repeated entries in the chain if the rejection rate is
high. Also, you may not use the chain as a randomly sampled sequence from the
underlying distribution. Subsequent entries in the change will be highly correlated
with each other! Nevertheless, the collection of all the points in a single chain
represent a proper sample from the distribution in the limit of an infinitely long
chain, thanks to the ergodic property.

12.6 Monte Carlo simulations of lattice models

An important application of MCMC techniques lies in the thermodynamics of phys-
ical systems, for example solids described on a lattice. In this case, we may have
a field �

x

at each lattice site x, whose dynamics is described by some Hamiltonian
H(�).
Assuming the canonical ensemble, the partition function is then given by

Z =

Z
exp


�H(�)

kT

�
[d�], (12.91)

where [d�] = d�1 d�2 d�3 · · · d�N is a short-hand notation for the di↵erential volume
element in the extremely high-dimensional space of all possible field configurations.
In practice, very often the task to compute the thermal average of some quantity

A arises. This is given by

hAi = 1

Z

Z
A(�) exp


�H(�)

kT

�
[d�]. (12.92)

Unfortunately, because of the high dimensionality, these integrals cannot be carried
out with standard techniques. We hence would like to employ Monte Carlo inte-
gration combined with importance sampling in which the phase-space points of the

124



12.6 Monte Carlo simulations of lattice models

system are chosen according to p(�) / exp
h
�H(�)

kT

i
. For obtaining such a sample, we

need a stochastic process, because neither direct inversion nor the rejection method
are feasible.
For producing the required Markov chain, one can for example use the Metropolis-

Hastings algorithm. If we symmetrically propose new states, then the acceptance
probability will become

r = min


1, exp

✓
�H(�0)�H(�)

kT

◆�
, (12.93)

still leaving many ways for how the proposals are generated.
Another possibility is to employ the so-called heat bath, or Gibbs sampler. This

directly sets

Wf (� ! �0) = C exp

✓
�H(�0)

kT

◆
, (12.94)

which even doesn’t depend on the state � at all. In practice, it is however not always
trivial to invert this and actually use it.
In either case, once a su�ciently long Markov chain with sampled states has

been constructed, we can use it to straightforwardly calculate alls sorts of thermal
averages by replacing the integrals with averages of A(�) at the sampled points.

Example: Ising Model

The Ising model is the simplest discrete spin model in which the field variable is
s
x

= ±1, i.e. at each lattice site the spin either points up or down. The partition
function of the system is

Z =
X

{s
x

}

exp

"
��

 
1

2

X

<x,y>

(1� s
x

s
y

) + B
X

x

s
x

!#
. (12.95)

Here the first sum is over all possible spin configurations. The sum < x,y > is only
over pairs of nearest lattice sites; only their spin interaction is counted. Finally,
B describes an external magnetic field, which one may also put to zero. � = 1/T
measures the temperature (we use a natural system of units here).
For B = 0, the Ising model shows 2nd-order phase transitions if the number of

dimensions is larger than one. Then, below a certain critical temperature, sponta-
neous magnetization of the medium occurs. For d = 2, the transition temperature
has been calculated analytically by Onsager, �c = ln(1+

p
2), but for higher dimen-

sions, analytic solutions are not known. Here one therefore needs to turn to Monte
Carlo simulations.
The simplest approach is to use the Metropolis algorithm in which one selects

a single spin s
x

at lattice site x and proposes the opposite spin direction s0
x

. The
selection of the lattice site can be done randomly, or in red-black ordering (or even
type-writer ordering, but this is less e�cient). One then computes the local energy

125



12 Monte Carlo Techniques

functional E
x

which involves all the terms in the interaction energy that involve the
chosen spin. This gives rise to a change �E

x

= E
x

(s0
x

)�E
x

(s
x

) due to the spin flip.
The acceptance probability is then given as

r = min (1, exp[�� �E
x

]) , (12.96)

and with this one can generate a long MC chain with di↵erent states of the system,
which will eventually represent thermal equilibrium at the prescribed temperature.
For this simple spin system, one may also use the heat bath update, and choose

the new spin direction of the selected site according to

p(s
x

) =
e��E

x

(s
x

=+1)

e��E
x

(s
x

=+1) + e��E
x

(s
x

=�1)
. (12.97)

Here the inversion is trivially possible; one simply draws a random number u from
[0, 1] and picks the +1 direction when u < p(s

x

) and spin equal to �1 otherwise.
Once a very long MCMC chain of the system in thermal equilibrium has been

calculated, one can simply compute various thermodynamic quantities of interest by
straightforward averaging (which really is Monte Carlo integration with importance
sampling). For example:

• Mean magnetization: M = 1
V

P
i si

• Specific heat: CV = 1
V

@E
@T

= hE2i � hEi2

• Magnetic susceptibility: �M = 1
V

@M
@T

= hM2i � hMi2

12.7 Monte Carlo Markov Chains in parameter
estimation

Another important application of MCMC techniques lies in parameter estimation,
in particular in the context of Baysian data analysis. Often in physics, we want to
use some experimental data

z = (z1, z2, . . . , zn) (12.98)

to infer a number of parameters

✓ = (✓1, ✓2, . . . , ✓m) (12.99)

which describe a physical model/theory. For example, observations of the microwave
background radiation (where z might refer to the pixels with measured temperature
fluctuations) are used to estimate parameters such as the mean density and expan-
sion rate of the Universe.
One way of constraining the parameters is to consider the likelihood function

p(z|✓). (12.100)

126



12.7 Monte Carlo Markov Chains in parameter estimation

Here one considers the probability for observing the data given the parameters have
certain values. If we have p(z|✓0) > p(z|✓) for two parameter sets ✓0 and ✓, then it
is natural to assume that ✓0 is somehow more plausible. This leads to the idea of
determining the best guess for the parameters by determining the point with the
maximum likelihood.
However, thinking about this for a bit, one realizes that we are actually not

interested in the probability of observing the data given some parameters, instead
we want the reverse: Because we have the data and the parameters are unknown, we
should ask, what statement can we make about the probability distribution function
of the (unknown) parameter values given the data? This means that we really would
like to have

p(✓|z). (12.101)

To obtain access to this quantity, we can invoke Bayes theorem, which simply
states

p(✓|z) = p(✓) p(z|✓)
p(z)

. (12.102)

In the context of Bayesian inferences, the terms in this expression carry names that
elucidate their meaning.

• p(✓) is the so-called prior. It encodes the knowledge we already have about ✓
even before the data is taken. This can be in the form of trivial constraints,
such as knowing that a parameter cannot take on negative values, or it can
come from previous experiments. If we do know nothing about the values of
the parameters, then the prior would be a flat distribution.

• p(z|✓) is the likelihood of certain data given the parameters in our theoretical
model. This we can normally calculate if we know the experimental errors.

• p(✓|z) is the posterior probability distribution function. It encodes the in-
formation we have gained about the parameters given the data z has been
measured/observed. Our goal with the experiment is to map out p(✓|z). This
allows us to give confidence intervals for any of the parameters, and also de-
termines all of their correlations.

• Finally, p(z) is called the model evidence and gives the probability distribution
function for the data. This is normally not easily accessible. Fortunately, it
turns out that this is not problematic as the evidence drops out when the
Monte Carlo chain is constructed.

A useful way to think about Bayes theorem as applied here is in terms of informa-
tion theoretical concepts: It describes how our prior knowledge is updated by new
data. This is encoded in the statement:

posterior / prior⇥ likelihood. (12.103)

127



12 Monte Carlo Techniques

Now back to the problem of how we can determine p(✓|z). We achieve a sampling
of this distribution by applying a Monte Carlo Markov Chain that samples the
posterior as an equilibrium distribution. To this end, we apply the Metropolis-
Hastings algorithm:

1. We adopt a proposal function q(✓ ! ✓0) = q(✓0|✓) which may only depend on
the current point in the chain.

2. We compute the acceptance probability

r = min

✓
1,

p(✓0) p(z|✓0) q(✓|✓0)
p(✓) p(z|✓) q(✓0|✓)

◆
(12.104)

and keep the proposal with this probability, otherwise we use the old point as
new point in the chain. We see here that the evidence p(z) drops out in the
Hastings ratio, simply because the data does not change. Also, we actually do
not need to know the normalizations of prior and likelihood – they also drop
out.

Again, once we have produced a su�ciently long chain, it becomes easily possible
to calculate integrals involving the posterior as this can be simply be done as a Monte
Carlo integral with importance sampling. This allows for example marginalizations
over certain parameters in an easy way.
Finally, we should not forget to mention one important caveat of these MCMC

techniques. It is usually quite di�cult to decide when a chain has reached a su�cient
length to safely trust all the obtained results. This is one of the main disadvantages
of the MCMC method. While there are some heuristics to tell when ‘convergence’
has been reached, doing this rigorously is a di�cult problem without simple practical
solution.

128


