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1 Different kinds of loops in R

Loops offer a powerful way to go over each individual element stored in lists, vectors, or
rows/columns in data frames. They are a great way to automate repetitive tasks.

Let us quickly explore the different types of loops in R: for, while, and repeat.

1.1 For Loop

A for loop is used to iterate over a sequence (such as a vector) and execute a block of code for
each element.

1.1.1 Syntax

“‘r for (variable in sequence) { # code to be executed }

[ 1: # Create a wector called numbers
numbers <- 1:5

# For loop to print each number
for (num in numbers) {
print (num)

3

1.2 While Loop

A while loop is used to repeatedly execute a block of code as long as a condition is true.

1.2.1 Syntax
“‘r while (condition) { # code to be executed }

[ 1: # Initialize a counter
counter <- 1

# While loop to print numbers from 1 to &
while (counter <= 5) {

print (counter)

counter <- counter + 1



[]:

[]1:

1.3 Repeat Loop

A repeat loop is used to repeatedly execute a block of code until a specific condition is met. It
must be exited explicitly using a break statement.

1.3.1 Syntax
“‘r repeat { # code to be executed if (condition) { break } }

# Initialize a counter
counter <- 1

# Repeat loop to print numbers from 1 to 5
repeat {
print (counter)
counter <- counter + 1
if (counter > 5) {
break

}
}

1.3.2 Summary

1. For Loop:
o Iterates over each element in a sequence (e.g., vector).
o Executes the block of code for each element.
2. While Loop:
e Executes the block of code as long as the condition is true.
¢ Requires the condition to be checked before each iteration.

3. Repeat Loop:
o Executes the block of code indefinitely.
e Must include a break statement to exit the loop based on a condition.

2 Conditional Statements in R

Let us now look at the use of if statements in R. Conditional statements allow you to execute
certain pieces of code based on whether a condition is true or false.

2.1 If Statement

An if statement is used to test a condition and execute a block of code if the condition is true.

2.1.1 Syntax

“r if (condition) { # code to be executed if condition is true }

# Define a wvartiable
x <- 10
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# If statement to check if = is greater than 5
if (x > 5) {
print("x is greater than 5")

¥

An if-else statement allows you to execute one block of code if the condition is true and another
block if the condition is false.

# Define a wvariable
x <=3

# If-else statement to check <f = s greater than 5

if (x > 5) {

print("x is greater than 5")
} else {

print("x is not greater than 5")
}

An if-else if-else statement allows you to test multiple conditions and execute different blocks of
code for each condition. You can combine multiple else if statements if you want to test for even
more conditions.

# Define a wvariable
x <=7

# If-else if-else statement to check the wvalue of x
if (x > 10) {
print("x is greater than 10")
} else if (x > 5) {
print("x is greater than 5 but less than or equal to 10")
} else {
print("x is 5 or less")

3

You can also use nested if statements to check multiple conditions within a single block of code.

# Define a wvariable
x <- 8

# Nested if statements
if (x > 5) {
if (x < 10) {
print("x is between 6 and 9")
} else {
print("x is 10 or greater")
}
} else {
print("x is 5 or less")
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2.1.2 Summary

o If Statement: Executes code if the condition is true.

o If-Else Statement: Executes one block of code if the condition is true, and another block
if the condition is false.

o If-Else If-Else Statement: Tests multiple conditions and executes different blocks of code
based on which condition is true.

e Nested If Statements: Allows multiple levels of condition checking within a single block
of code.

3 R-centric techniques and quirks

# Scalars are treated as 1-element vectors

# This means that even 1if you define a single number, it is treated as a wvectory,
—with one element.

x <-1

print(is.vector(x))

print (length(x))

# Vectors grow automatically as needed

# In R, vectors can grow automatically when you assign a value to an index that,
—~15 beyond the current length of the wector.

x[8] <- 2

print(x)

NA stands for “Not Available” or missing values.

# How to allocate a vector of given length

# In R, you can create (allocate) a vector of a specified mode (data type) and,
—length using the vector function.

# Possible modes include "character”, "logical", "integer”, etc.

v <- vector(mode="numeric", length=10)

print(is.vector(v))

print (length(v))

Sequentially building up vectors or lists by appending elements one by one can be inefficient in R
because it requires reallocating memory each time an element is added.

Instead, it’s more efficient to allocate the necessary memory once and then fill the vector or list.

# avoid sequencial build-up of wvectors or lists

# Inefficient way:
dynamic <- function(n) {
v <- NULL # define empty object
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for (i in seq(n)) v <- c(v,i) # append element by element
print(is.vector(v))
return(v)

¥

# Effictent way:
static <- function(n) {
v <- vector(mode="integer", length=n) # allocate vector once

for (i in seq(m)) v[i] =1 # fill 4t
print(is.vector(v))
return(v)

}

n = 50000

print("static ...")

system.time(static(n))

print("dynamic ...")

system.time(dynamic(n))

dynamic is inefficient because... * Initialization: v <- NULL initializes an empty vector. * Ap-
pending Elements: for (i in seq(n)) v <- c¢(v, i) appends elements to the vector one by one using c(v,
i). * Each iteration reallocates memory for v, which is computationally expensive. * Check
and Return: print(is.vector(v)) checks if v is a vector and prints the result. return(v) returns the
final vector.

static is efficient because... * Initialization: v <- vector(mode=“integer”, length=n) pre-allocates
a vector of length n with integer mode. * Filling Elements: for (i in seq(n)) v[i] <- i fills the vector
with values from 1 to n. * No memory reallocation is needed during the filling process. *
Check and Return: print(is.vector(v)) checks if v is a vector and prints the result. return(v) returns
the final vector.

3.0.1 R quirks: no string indexing

In R, you cannot directly index individual characters in a string using square bracket notation as
you might in some other languages.

Instead, you can use functions like substring() to extract parts of a string.

s <- "abcde"
substring(s, 1, 2) # work around

3.0.2 R quirks: no strides in array indexing

In R, you cannot directly specify strides (step sizes) in the square bracket notation for indexing
arrays.

Instead, you can use functions like seq() to create a sequence with a specific stride and then use
that sequence for indexing.
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a <- seq(10)
alseq(1,10,2)] # work around

Explanation:

a <- seq(10): This creates a sequence from 1 to 10 and assigns it to the variable a.

seq(1, 10, 2): This generates a sequence from 1 to 10 with a step size of 2, resulting in c(1, 3, 5, 7,
9).

afseq(1, 10, 2)]: This indexes a using the sequence generated by seq(1, 10, 2), effectively selecting
every second element of a.

3.0.3 1In R, lists are similar to Python dictionaries but maintain the order of elements,
allowing for indexing by position.

# Creating a list
alist <- list(one = 1, two = 2, three = 3)

# Printing key and value using single bracket indexing
cat("key and value:\n")
print(alist[1])

# Printing value only using double bracket indezxing
cat("value only:\n")
print(alist[[1]])

# Accessing value via key using $ and double bracket notation
cat("value via key:\n")

print(alist$two)

print(alist[['two']])

# looping over lists im R provides list wvalues (not keys like for Pythony
—dictionaries)

for (value in alist) print(value)

# in contrast, here the keys are extracted with names()
for (key in names(alist)) print(key)

3.0.4 Use apply family of functions to avoid loops

Inefficiency: Loops in R, similar to Python, can be inefficient, especially when applied to large
datasets.

This inefficiency arises because loops typically involve repeated interpretation and execution of R
code, which can be slower compared to vectorized operations.

The apply family of functions in R (apply, lapply, sapply, etc.) can often replace loops.

These functions are more efficient because they are optimized for operations on arrays and lists.
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They correspond to functions like map() and list comprehensions in Python.

# Create a 10z5 matriz of random numbers
x <- matrix(rnorm(10%5), nrow=10, ncol=5)

# Apply the function "mean” to all columns and return the result in a vector
m <- apply(x, 2, mean)

# Print the matric
print(x)
cat("\n") # Print a newline for better readability

# Print the wvector of column means
print(m)

# In this case, one could have used the built-in function colMeans() to do the,
—~trick

3.0.5 What just happened here?

rnorm(10*5): Generates 50 random numbers drawn from a normal (Gaussian) distribution.
matrix(.., ntow=10, ncol=5): Reshapes these 50 numbers into a 10x5 matrix.

x is now a 10x5 matrix with random numbers.

apply(x, 2, mean): Applies the mean function to the second dimension (columns) of the matrix x.
The result is stored in m, which is a vector containing the mean of each column of the matrix x.

This is a flexible and powerful approach, as apply can take any function and apply it across
dimensions of a matrix or array. However, for specific tasks like computing column means, it can
be slightly less efficient than dedicated functions.

# a more concise and efficient approach for computing column means is to usey
—built-in functions like colMeans:

m <- colMeans(x)

print (m)

The replicate() function in R is used to repeatedly evaluate an expression a specified number
of times. It is related to sapply() in that both functions apply a function over a sequence,
but replicate() is specifically designed for repeated evaluations of an expression, often used for
simulations or random experiments.

# toss_dice is a function that simulates rolling dice.

toss_dice <- function(n) sample(c(1,2,3,4,5,6), n, replace=TRUE) # function,
—contans a random component, m, which is the number of dice to rToll
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# replace = TRUE: Indicates that the sampling %s done with replacement, meaning,
—the same number can appear more than once in the result.

# Using replicate() to simulate dice tosses
x <- replicate(10, toss_dice(3)) # toss 3 dice 10 times

# replicate attempts to combine the,
—results into a matriz or array

print(x)

3.0.6 The triple-dot argument

In R, the .. argument in function definitions allows you to pass an arbitrary number of arguments
to the function. These arguments can then be passed to other functions within the body of your
function. This is particularly useful for creating flexible and general-purpose functions.

It functions similarly to *args and **kwargs in Python.

add_random_numbers <- function(n, ...) {
x <- rnorm(n, ...)
return(sum(x))
}
add_random numbers <- function(n, ...): This defines a function named

add_random_ numbers that takes an argument n and any additional arguments specified
by ....

rnorm(n, ...): Generates n random numbers from a normal distribution, with additional param-
eters passed via . ...

The rnorm function can take additional parameters like mean and sd to specify the mean and
standard deviation of the normal distribution.

return(sum(x)): Calculates the sum of the generated random numbers and returns it.

# Call the function with named arguments
print(add_random_numbers(5, mean=-5, sd=1.5))

# Call the function with positional arguments
print(add_random_numbers(5, 10, 1.5))

To know which optional arguments are available for a function like rnorm() in R, you can use the
R help system. Specifically, you can use the ? operator or the help() function to look up the
documentation for rnorm(). This will provide a detailed description of the function, including all
the optional arguments you can use.

7rnorm
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3.0.7 Defining your own custom operators

In R, you can define your own custom operators. This is a powerful feature that allows you to
create operators that perform specific tasks, making your code more expressive and concise.

# define an operator that concatenates two strings sl and s2, replacing R's,
wpaste() function

'%.%"' <- function(sl,s2) paste(sl,s2,sep="") # This line defines a custom infiz,
—operator /.J.

The syntax for defining a custom operator in R uses backticks (‘operator’) and the assignment
operator <-.
The function body specifies what the operator does.

The paste() function in R concatenates strings with a specified separator. By default, paste() uses
a space as a separator.

In this case, we use the paste() function to concatenate two strings s1 and s2 without any separator
p g
(i.e., we set sep = ””).

# use 1t
'Hello' %.% ' ' %.% 'world!'
Our custom operator at work. First, it concatenates ‘Hello’ and ¢ ’ to produce a new string: ‘Hello’.

Then it is invoked again in sequence to combine the strings ‘Hello’ and ‘world!’, producing the new
string ‘Hello world!’.
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