2DGaussian

August 7, 2024

[1]: ### Plot the bivariate Gaussian from the lecture as a mesh plot

```
### also as contrours of constant probability density
                   ### You can define a grid of (x,y) values to calculate the joint PDF
                   \# Define the mean vector and covariance matrix for the standard bivariate \sqcup
                      ⇔normal distribution given
                   mu \leftarrow c(0, 0) # Mean vector with means of X and Y both equal to 0
                   C \leftarrow \text{matrix}(c(1, 0, 0, 1), \text{nrow} = 2) # Covariance matrix with variances 1 and
                        →no covariance (identity matrix)
[2]: # Create a grid of (x, y) values
                   x \leftarrow seq(-3, 3, length.out = 40) # Sequence of x values from -3 to 3
                   y \leftarrow seq(-3, 3, length.out = 40) # Sequence of y values from -3 to 3
                   grid <- expand.grid(x = x, y = y) # Create a data frame containing all_
                         \hookrightarrow combinations of x and y values
[3]: # Define a function to calculate the density of the bivariate normal,
                       \hookrightarrow distribution
                   bivariate_normal_density <- function(x, y, mu, C) {</pre>
                           # Extract the mean and covariance values
                          mu x <- mu[1]
                          mu_y <- mu[2]
                           sigma_x <- sqrt(C[1, 1])</pre>
                          sigma_y <- sqrt(C[2, 2])
                          rho <- C[1, 2] / (sigma_x * sigma_y)</pre>
                           # Calculate the density
                           z < (x - mu_x)^2 / sigma_x^2 + (y - mu_y)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x - u)^2 / sigma_y^2 - 2 * rho * (x -
                        \rightarrowmu_x) * (y - mu_y) / (sigma_x * sigma_y)
                          density <-\exp(-z / (2 * (1 - rho^2))) / (2 * pi * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x * sigma_x * sigma_y * sqrt(1_i)) / (2 * pi * sigma_x 
                       → rho^2))
                          return(density)
                    # Calculate the density values for the grid points we defined above
                   grid$z <- mapply(bivariate_normal_density, grid$x, grid$y, MoreArgs = list(mu =_ 
                         \rightarrowmu, C = C))
```

```
[4]: # Convert the grid to a matrix format for 3D plotting

z_matrix <- matrix(grid$z, nrow = length(x), ncol = length(y))

# Plot the 3D mesh plot

persp(x=x, y=y, z=z_matrix, theta = 20, phi = 20, expand = 1.0, col = □

→"lightblue",

xlab = "x", ylab = "y", zlab = "Density", main = "3D Mesh Plot of □

→Bivariate Normal Distribution",

cex.lab = 1.5, cex.axis = 1.2, cex.main = 1.5) # Increase font sizes
```

3D Mesh Plot of Bivariate Normal Distribution


```
[5]: # Plot the contour plot # Uncomment the command below to save the contour plot as a PDF file
```

```
# pdf("contour_bivariate_normal_distribution.pdf", width = 6, height = 6)

contour(x, y, z_matrix, xlab = "X", ylab = "Y", main = "Contour Plot of_\(\text{\text{\text{\text{\text{ot}}}}}\)
\[
\text{\text{\text{Bivariate Normal Distribution",}}}\]
\[
\text{lwd = 2, # Increase line thickness}\]
\[
\text{cex.lab = 1.5, cex.axis = 1.2, cex.main = 1.5, labcex = 1.2) #_\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{
```

Contour Plot of Bivariate Normal Distribution

[]: # Q. what happens if we try 0.5 instead of 0 for the covariance?

[]:[