Statistical methods(UKSta) Introduction Dr. Yiannis Tsapras

(Based on original lectures by Prof. Dr. N. Christlieb and others)

Code: UKSta	Modulname: Statistical Methods
Art des Moduls	Wahlpflichtmodul
Modulbetreuer	
Sprache	Englisch
Leistungspunkte*	3
Lerninhalte des Moduls*	 Concept of probability, probability distributions, Bayesian reasoning errors, error propagiation, estimation, uncertainty orthodox hypothesis testing (e.g. t-test) and Bayesian model comparison linear models and regression binomial and poisson processes likelihood-based modelling: prior, likelihood, posterior; maximum likelihood, least squares, chi-squared Bayesian modelling using numerical (Monte Carlo) methods: sampling, integration nonlinear and nonparametric methods: density estimation, kernel methods, regularization statistics with the R pgrogramming language learning the principles and methods of probability and statistics needed for analysing, modelling and interpreting data
Lehr- und Lernformen*	• Laboratory course, homework Literatur: Notes provided by lecture, plus book/internet recommendations Besonderheiten: course given in English; block course of 10 half days over two weeks (mornings)
Voraussetzungen für die Teilnahme, ggf. vorgeschriebenes oder empfohlenes Studiensemester*	Notwendige/nützliche Vorkenntnisse: basic (high school) statistics and first semester maths (for physicists). Recommended from the third semester
Verwendbarkeit des Moduls*	(siehe Präambel).
Voraussetzung für die Vergabe von Leistungspunkten, Arbeitsaufwand und Noten*	Prüfungsmodalitäten: Doing the exercises in class, submitting the homework, presenting the homework at least once
Häufigkeit des Angebots von Modulen*	Sommersemester
Dauer*	2 Wochen

What is statistics?

- Collecting, organizing, analyzing, interpreting, summarizing and presenting data
 - Mean; median; variance; quartiles of a distribution
 - Bar Charts; Histograms; Box plots;
- Inference from data; decision making
 - Determination of the parameters of a model
 - Do the measurements agree with the model?
 - Do two sets of measurements/properties of two samples agree with each other?
- Understanding structure in data
 - Are two parameters correlated with each other?
 - Classification: can data be grouped according common properties?

The role of statistics

- "The logic behind the science"
- Not only important for describing/analysing given datasets, but also for planning/executing experiments as well as designing surveys and compiling samples.
- Descriptive statistics: Summarizing and describing features of a dataset.
- Inferential statistics: Making predictions or inferences about a population based on a sample.

Statistics is everywhere

- Genetics, Bioinformatics
- Healthcare and social sciences
- Engineering, Physics and Astronomy
- Design of computer operating system (e.g., theory of queues)
- Insurance and finance
- Theory of complex systems
- ... and much more

Different approaches to statistics

- Types of data:
 - Qualitative (Categorical) Data: Non-numeric data (e.g., gender, nationality)
 - Quantitative Data: Numeric data (e.g., height, weight)
- Bayesian vs Frequentist approaches to statistics
- Emphasis on Monte Carlo methods
 - Importance constantly increasing due to cheaper and more efficient computing resources
- Books often deal with methods applied to specific topics
- We will cover the general principles

Course aims

Main aims:

- Understand basic concepts of probability and statistics
- Learn how to use computational tools to describe/analyse and draw inferences from data
- Practical approach emphasized, only some theory
 Side aims:
- Learn how to work with Jupyter notebooks, handling files in a Unix/Linux environment
- Learn to use R (but not a full fledged R-programming course)

(online https://www.coursera.org/course/rprog)


Course topics: probability

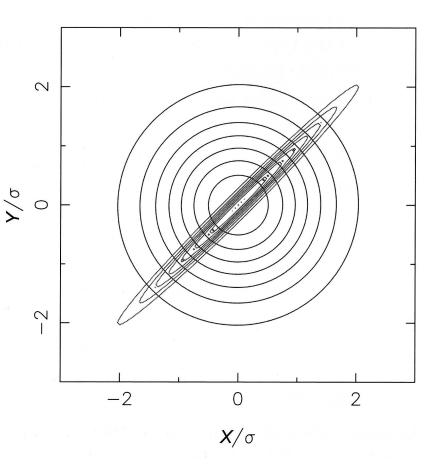
- "The theory of probabilities…is only common sense reduced to calculus."
 -Pierre Simon, Marquis de Laplace, A Philosophical Essay on Probabilities
- We will cover: Probability axioms and rules, sample space, conditional probability, combinations and permutations, event independence, Bayes' theorem

$$p := \frac{\text{number of favourable events}}{\text{total number of events}}$$

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
(1) For a random event A, $0 \le p(A) \le 1$.
(2) For the sure event A, $p(A) = 1$.
$$p(A|B) = \frac{p(A \text{ and } B)}{p(B)}$$
(3) If A and B are exclusive events, then
$$p(A \text{ or } B) = p(A) + p(B).$$

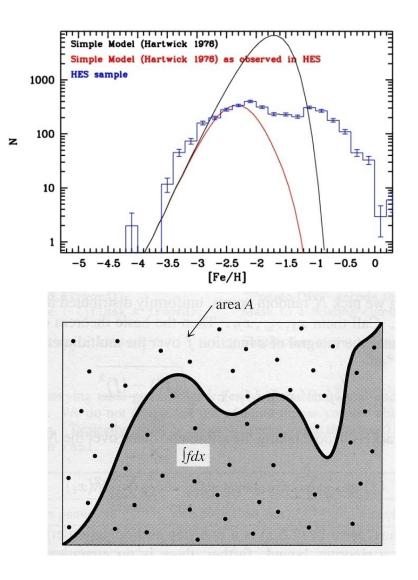
Course topics: probability distributions

Course topics: covariance and correlation


How variables relate to each other (or not)

Consider measurements x_i and y_i of the variables x and y. The covariance σ_{xy} is related to to the correlation coefficient $\rho(x, y)$,

$$\rho(x,y) = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$


It can be estimated by

$$\hat{\rho}(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.$$

Course topics: Monte Carlo methods

- Method of choice when statistical problems can not (easily) be solved analytically.
- Simulation of data sets;
 e.g. simulated
 measurements with
 uncertainties following a
 Gaussian distribution.
- Monte-Carlo integration.

Course topics: Parameter estimation, Maximum Likelihood

Let x_1, x_2, \ldots, x_n be measurements which follow the probability distribution f(x|a), where a is one or more free parameter(s). The likelihood function L(a) is defined as

$$L(a) = f(x_1|a) \cdot f(x_2|a) \cdots f(x_n|a) = \prod_{i=1}^n f(x_i|a).$$

L(a) is the probability for measuring the set of values x_1, x_2, \ldots, x_n , given the parameter(s) a and the probability distribution function f(x|a).

According to the maximum likelihood principle, the best estimate \hat{a} of a is the one which maximizes the likelihood function; i.e.,

$$L(a) \stackrel{!}{=}$$
 maximum.

Course topics: Error propagation

We consider a transformation

$$y_i(x_1, x_2, \dots, x_n), \ i = 1 \dots m.$$

The law of error propagation is

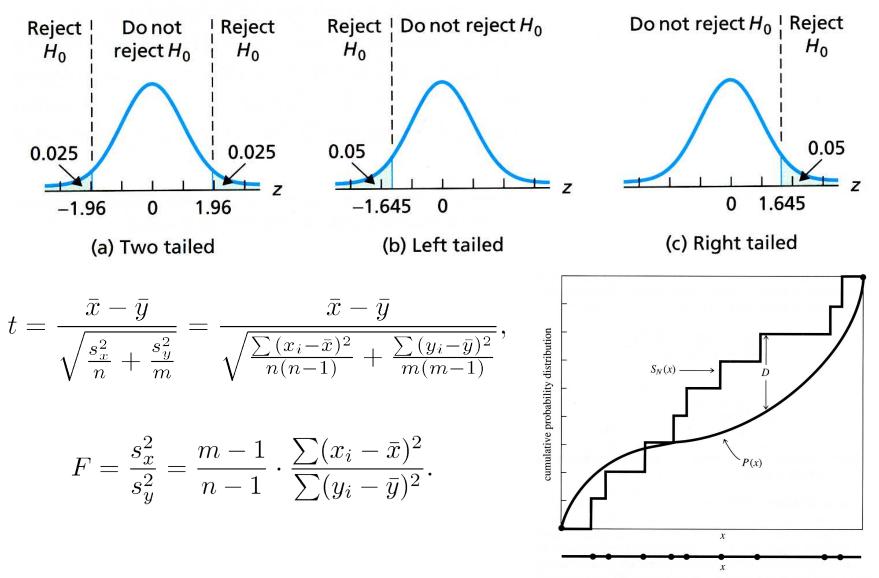
$$\mathbf{C}[\mathbf{y}] = \mathbf{B}\mathbf{C}[\mathbf{x}]\mathbf{B}^T,$$

where C[y] and C[x] are the covariance matrices for y and x, respectively, and

$$\mathbf{B} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

Course topics: Linear regression

$$L(a,b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{[y_i - (ax_i + b)]^2}{2\sigma_i^2}\right\}$$


$$l(a,b) = \text{const.} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} [y_i - (ax_i + b)]^2.$$

$$a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$b = \frac{1}{n} (\sum y_i - a \sum x_i)$$

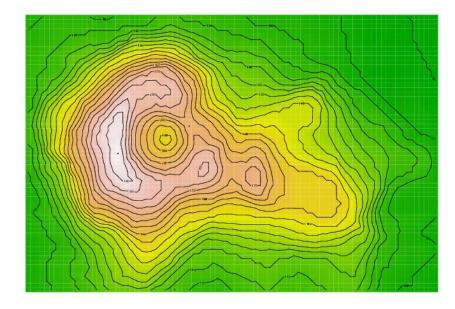
Course topics: hypothesis testing (frequentist)

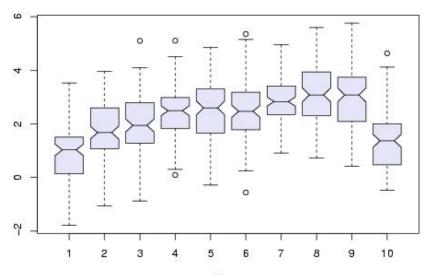
Test	H _o	Assumptions	Parameters	Test Statistic
Student's <i>t</i> test	μ _x = μ _y	Data is Gaussian	μ_x , μ_y , σ_x , σ_y	t
F test	$\sigma_x = \sigma_y$	Data is Gaussian	σ_x , σ_y	F
χ^2 test	Same parent distribution	(<i>O</i> _i - <i>E</i> _i)² is Gaussian	—	χ^2
KS test	Same parent distribution	—	—	D
<i>U</i> test	Same parent distribution	_	_	U_{A}, U_{B}
Spearman	Data is uncorrelated	_	_	r _s
Runs test	Data is random	_	_	r

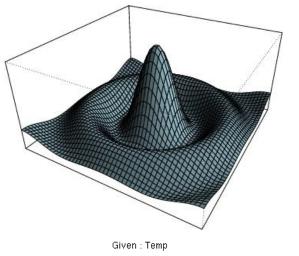
Course topics: hypothesis testing (frequentist)

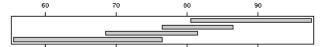
Bayesian methods

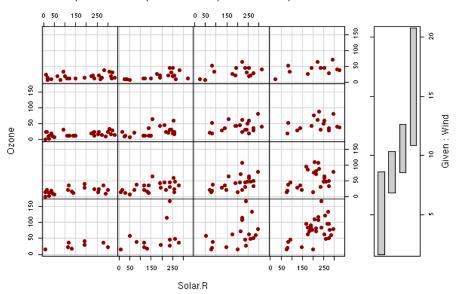
- Alternative to frequentist methodology
- Basic idea behind Bayesian approach
- The role of the prior
- Bayesian parameter estimation
- Bayesian model selection

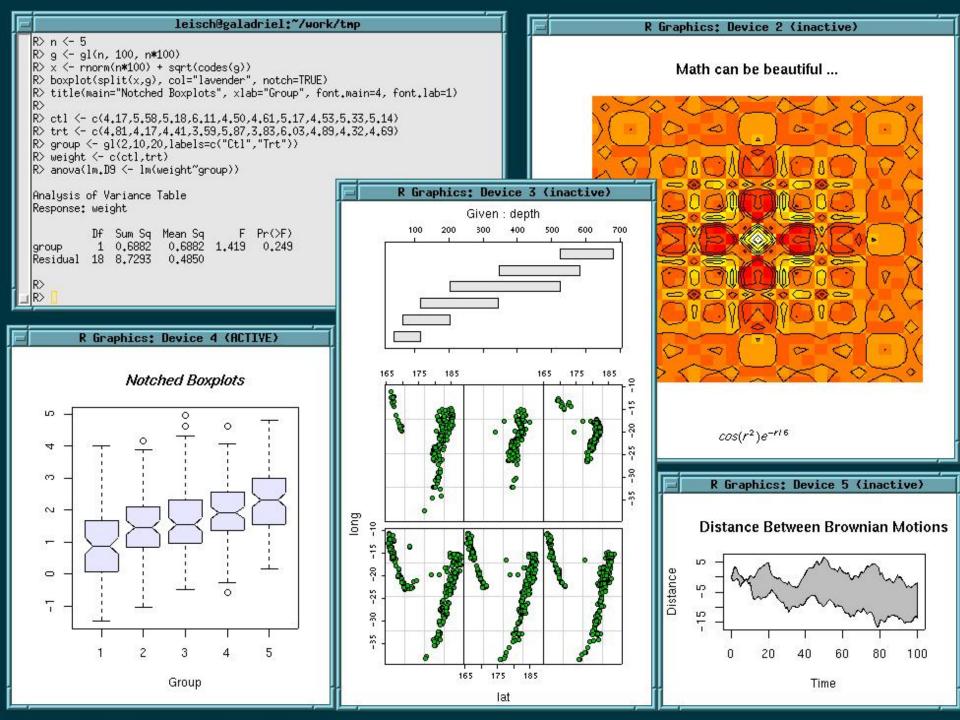

$$P(A \mid B) = rac{P(B \mid A) \cdot P(A)}{P(B)}$$




R


- Programming language and environment for statistics and data analysis
- Platforms: Linux, MacOS X, Windows
- Published under GNU General Public License (GPL);
 i.e., freely available (see www.r-project.org)
- Command-line; interpreter
- Object oriented (will not play a big role)
- Own programs can easily be integrated
- Extensive statistics library but here a lot DIY
- Very powerful graphics package(s)


Graphics produced in R



Group

Preliminary course plan

Day Topic(s)

First Week

Mon	Introduction; running R; Jupyter; markdown; R tutorial
Tue	Probability; Probability distributions; more R
Wed	Combinatorics; error propagation; central limit theorem
Thu	Monte Carlo methods; Metropolis-Hastings algorithm
Fri	Bootstrap; Maximum Entropy; quick confidence intervals

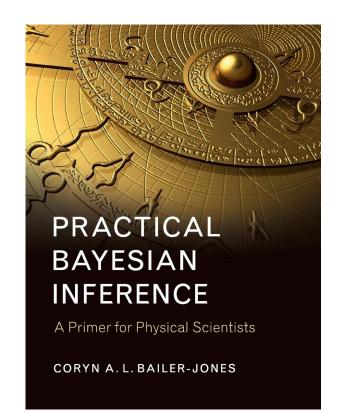
Second Week

Mon	Maximum Likelihood Estimation; fitting models to data
Tue	Bayesian parameter estimation; comparing models;
Wed	Hypothesis testing 1; type I and II errors; p-values
Thu	Hypothesis testing 2; (classical hypothesis testing)
Fri	Classification, Gaussian Processes

Course is under development! (Dauerbaustelle)

- Time management? Overlap between days?
- Feedback appreciated

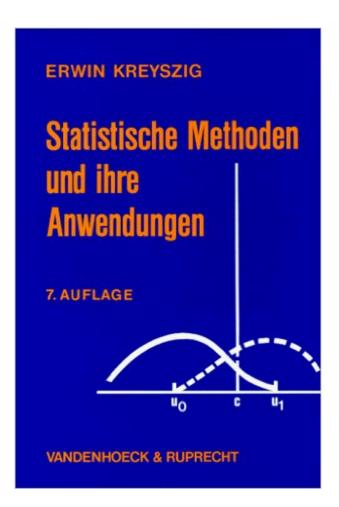
Course format


- Time: Mo/Tu/Th/Fr 9:00-13:00, break 10:45-11:15
- Presence is mandatory; exceptions have to be discussed with me in advance.
- 14:00-17:00 Work on assignments; up to 3 people
- The results of homework assignments have to be submitted in writing by 9:15 the next day as single PDF (export Jupyter notebook) via Ü-system
- To pass the course and earn the 3 ECTS credit points, you have to get at least 60% in each assignment
- Solutions to the problems presented by you and discussed on the following day

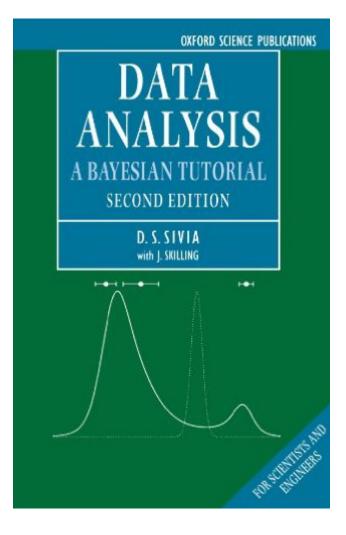
Resources

- Lecture slides will be made available online at the end of each day
- Other handouts and documents will be provided
- Most of these materials will be hosted on the UKSta course webpage
- For R, consider using online help pages and tutorials
- Books: check course website

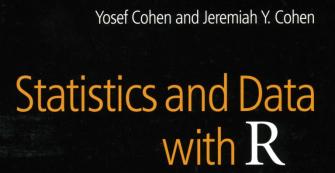
Coryn Bailer-Jones Practical Bayesian Inference: A Primer for Physical Scientists 1st edition, 2017 29€


Very useful for the course. Some examples taken from the Book. Available online at UB Heidelberg.

R-scripts of the book can be found at the web site of Coryn Bailer-Jones: http://www2.mpia-hd.mpg.de/homes/calj/


Erwin Kreyszig, Statistische Methoden und ihre Anwendungen 7th edition, 1979 (!) 40 €

(in German only)


For those interested in exploring the theory in greater detail

Sivia & Skilling
Data Analysis: A Bayesian Tutorial
1st edition, 2006
30 €

R books

An Applied Approach Through Examples

ISBN 978-0-470-75805-2 63.99 €

Lots of useful routines

Press/Teukolsky/Vetterling/Flannery *Numerical Recipes* Cambridge Univ. PreSS 2307 70 €

NUMERICAL RECIPES

The Art of Scientific Computing

THIRD EDITION

William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery

Further resources

- Article by David Hogg et al. (2010): Data Analysis Recipes (on course web page)
- R cheat sheet (on course web page)
- R project online:

www.r-project.org

- R project related quick reference: www.statmethods.net
- Wikipedia, in particular English pages!