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Let us try to define some terms

random experiment: a mechanism that produces a definite outcome that cannot
be predicted with certainty

sample space:The collection of all possible outcomes or results of a random ex-
periment
e.g. tossing a coin 3 times giving head or tails. The sample space here is

Ω = {hhh, hht, hth, htt, thh, tht, tth, ttt}

event: A subset of the sample space
e.g. the event A of obtaining two heads (the outcome observed) is

A = {hht, hth, thh}

probability measure: a mapping from the power set of Ω to the interval [0,1]. i.e.
each subset of Ω has an associated probability and their sum is 1

random variable: a function that maps a set of events to associated probabilities
e.g. the random variable X defined as number of heads in 3 tosses of a coin
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Setting the probability

Frequentist approach: The probability of an event A, denoted as P(A), is

• defined as the long-run relative frequency of the event A occurring in repeated
trials of a random experiment (actually tossing coins).

• relies on the notion that probabilities are objective and can be determined
through repeated experimentation and observation.

Bayesian approach: P(A) is interpreted as a degree of belief in the occurrence of
the event, given prior knowledge or evidence

• This contrasts with the frequentist interpretation, where probability is viewed as
the long-run relative frequency of the event occurring

• Remark: P(A) is called the prior probability (distribution) of the event A, and it
is updated every time when new data comes in
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Problems of probability definitions

Frequentist approach:

• Implicitly assumes that all elements of the sample space are equally likely
(Laplace’s principle of indifference). Is this always true?

• Relies on a random experiment that is carried out a large number of times and
under the same conditions. Is this feasible?

Bayesian approach:

• “Belief” is subjective (but quantifiable). Probabilities therefore represent degrees
of belief rather than long-run frequencies.

• Prior probabilities (beliefs) can be updated based on new evidence.
• In most cases, the results do not critically depend on the particular assumptions
on the prior probability.

Resolution(?) through Kolmogorov Axioms: These provide a consistent logical
foundation for probability theory that is applicable to both frequentist and Bayesian
interpretations.
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Kolmogorov axioms

Non-negativity: For any event A, the
probability is positive: 0 ≤ P(A) ≤ 1

Normalization: The probability that
at least one of the events in the entire
sample space S will occur: P(S) = 1

Additivity: For any two mutually ex-
clusive events, A and B: P(A orB) ≡
P(A ∪B) = P(A) + P(B)

Illustration via sets

Example for throwing dice:

Change of specific outcome (e.g. 1): 1/6

Chance for each of the sides coming up: 1/6

Chance of rolling a 1 or 2 (these are exclusive events!): P(1 ∪ 2) = 2/6 = 1/6+1/6
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More on probability calculus

Probability of complementary event: P(notE) = P
(
E
)
= 1− P(E)

• Note: The probability of the complement of event E can be also written in other
ways: P(Ec) = 1− P(E) or P(¬E) = 1− P(E)

• Both expressions represent the probability that event E does not occur.

If {Ei} is a set of mutually exclusive and exhaustive events (i.e., includes all
elementary events), then

n∑
i=1

P(Ei) = 1
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Conditional probability

Let E and F be two events with P(F ) > 0. Then the conditional probability of
E given that F has occurred is

P(E |F ) =
P(E andF )

P(F )
≡ P(E ∩ F )

P(F )
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Example:

Suppose we have a deck of 52 playing cards. We want to find the probability of
drawing an Ace given that we have already drawn a card from the deck and it is a
Spade (♠) (which we saw by looking only at the tip of the card).

The probability of drawing an Ace given that we have already drawn a Spade is
given by:

P (Ace|Spade) = P (Ace ∩ Spade)

P (Spade)

P (Ace ∩ Spade) is the probability of drawing the Ace of Spades: 1
52

P (Spade) is the probability of drawing any Spade: 13
52

Therefore

P (Ace|Spade) =
1
52
13
52

=
1

13
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Corollary: joint probability

Special case: If events A and B are independent (i.e. do not affect each others
probability of happening), then: P(A ∩B) = P(A) P(B)

For example in successive dice rolls, the score of one roll does not affect subsequent
rolls

In such cases the events can be considered independent, but we cannot assume this
is always true

In conditional probabilities the order of the events generally does not matter

P(A |B) =
P(A andB)

P(B)
≡ P(A ∩B)

P(B)

⇐⇒
P(A andB) ≡ P(A ∩B) ≡ P(A,B) = P(A |B) P(B) = P(B |A) P(A)

Has to be like this since the logical “and” is commutative. Note, the writing of the
“and” with comma or using the intersection symbol (∩) from standard Set theory.
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Law of total probability

Since the event B either happens or not, we can write

P(A) = P(A andB) + P
(
A andB

)
= P(A |B) P(B) + P

(
A |B

)
P
(
B
)

This can be generalized:
If {Bi} is the set of all possible (mutually exclusive) events then

P(A) =

n∑
i=1

P(A ∩Bi) =

n∑
i=1

P(A |Bi) P(Bi)

This relatio is called the law of total probability.

→Blackboard
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The Monty Hall Problem

Consider the following scenario: You are a contestant in a game show and you are
presented with three closed doors, behind only one of which is a prize (the other
two have nothing behind them). You are asked to pick a door. Then, the host
opens one of the OTHER two doors, which has nothing behind it. You are offered
a choice of staying with the door you originally picked or switching to the other
remaining door. Whichever door you choose will be your final choice.

Should you stay with the door you chose or switch? Does it even matter?
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Example: law of total probability

Two dice A and B are tossed simultane-
ously. What is the probability that A=1?

The probability for each of the possible
combinations is 1/36. Therefore . . .

P(A = 1) =

n∑
i=1

P(A = 1 |Bi) P(Bi)

=

n∑
i=1

P(A = 1andBi)

= P(A = 1andB = 1) + P(A = 1andB = 2) + . . .

= 6× 1

36
=

1

6

In this example the answer was easy to arrive at from the outset. However, there
are more complex situations where it is not as obvious!
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Independent events

Two events A and B are independent if

P(A |B) = P(A)

i.e. the probability of event A is independent of the occurrence of event B (and
vice versa)

As we saw before, two events A and B are independent if and only if

P(A andB) ≡ P(A ∩B) = P(A) P(B)

In the case of independent events, we can simply multiply their probabilities to get
the probability of their intersection, which makes things easier.
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Example: independent events
Sample space of tossing zwo dice considered with four different events. Note, similarity
with Venn diagram.

event 1: sum is 7

event 2: black die
shows 4

event 3: double of 2s

event 4: red die shows
4, black die 1 to 5

This means: P(1) = 6/36, P(2) = 6/36, P(3) = 1/36, P(4) = 5/36

Are events 3 and 4 independent?

Are events 1 and 2 independent? →Blackboard
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Bayes’ theorem, or law of inverse probability
Joint probability can be arranged as

P(B |A) =
P(A |B) P(B)

P(A)

This expression is one of the most important expressions in probability theory. It looks
mostly harmless but becomes far more interesting if we substitute ‘data’ for A and
‘model/hypothesis’ for B:

P(model |data) = P(data |model) P(model)

P(data)
=

P(data |model) P(model)∑n
i=1P(data |modeli) P(modeli)

We can derive the probability of the model (being the correct one) given the data.
=⇒ Bayesian inference

The individual terms have names: P(B) is called the prior, P(A |B) is the
likelihood, P(B |A) is the posterior and P(A) the evidence

The term inverse probability is motivated by the fact that the conditional proba-
bilities of A and B are interchanged →blackboard
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Example: The patient screening test
Consider the following scenario:
A serious disease affects about 1% of population. You are worried that you might be
infected so you go to see a doctor to test whether you have it. The doctor performs a
screening test that has 95% sensitivity –that is, 95% of people who have the disease
test positive (true positive rate) – and 99% specificity – that is 99% of the healthy
people test negative (true negative rate).

Question: If you test positive, what are the chances that you have the disease?
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Using Bayes’ Theorem for the patient screening test

Let D be the event of having the disease and T the event of testing positive

Only 1% of the population have the disease: P(D) = 0.01 and P(¬D) = 0.99

Sensitivity: P(T |D) = 0.95 and Specificity: P(¬T |¬D) = 0.99, so P(T |¬D) =
0.01

Bayes’ Theorem: P (D|T ) = P (T |D)·P (D)
P (T )

Calculate P (T ) = P (T |D) · P (D) + P (T |¬D) · P (¬D) = 0.0194

Calculate P (D|T ) = 0.95×0.01
0.0194 ≈ 0.49

• Despite the test’s high sensitivity and specificity, the probability that you have
the disease given a positive result is approximately 49% (about half the people
who test positive do not have the disease)

• This is due to the low prevalence of the disease in the general population
• What if you take another test a few days later and test positive again?
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Tested positive twice? Bad news

Let T1 and T2 be the events of testing positive on the first and second tests,
respectively. We want to evaluate P (D|T1 ∩ T2)

P(T1|D) = P(T2|D) = 0.95 and P(T1|¬D) = P(T2|¬D) = 0.01

We already calculated P (D|T1) ≈ 0.49

The probability we test positive a second time after we already tested positive the
first time is P(T2|T1) = P (T2|D) · P (D|T1) + P (T2|¬D) · P (¬D|T1)

• The probability that we don’t have the disease if we tested positive the first time
is P(¬D|T1) = 1− P (D|T1) = 1− 0.49 = 0.51

• Substituting back we get P(T2|T1) ≈ 0.47

P (D|T1 ∩ T2) =
P (T2|D)·P (D|T1)

P (T2|T1)
= 0.95×0.49

0.47 ≈ 0.99

• If you test positive twice, the probability that you have the disease is approxi-
mately 99%!

Probability ▷ TOC ▷ FIN 2.17



Univariate probability distributions

A univariate probability distribution describes the probability of outcomes for a
single random variable

These distributions can be discrete or continuous, depending on the nature of the
random variable

A discrete probability distribution is applicable to discrete random variables, i.e.
variables that take a countable number of distinct values

The probability mass function (PMF), f(x) = P(X = k), gives the probability
that a discrete random variable X is exactly equal to some value k. Here, k is a
value from the range of values available to X (e.g. 1, 2, 3, ...)

Examples of discrete probability distributions:

Binomial Distribution: P (X = k) =
(
n
k

)
pk(1− p)n−k

Poisson Distribution: P (X = k) = λke−λ

k!
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Binomial distribution

Represents the number of successes in a fixed number of independent Bernoulli
trials (e.g., number of heads in 10 coin flips). [A Bernoulli trial is a random
experiment with exactly two possible outcomes.]

f(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k

• P (X = k) represents the probability of obtaining exactly k successes out of n
trials.

• The term
(
n
k

)
, read ‘n choose k’, is called the binomial coefficient and represents

the number of ways to choose k successes from n trials:
(
n
k

)
= n!

k!(n−k)!

• pk is the probability of having k successes, where p just represents the probability
of having a success in each trial

• (1 − p)n−k is the probability of having n − k failures, where (1 − p) represents
the probability of failure in each trial

• has an expectation value (mean) E[k] = np
• has variance Var[k] = np(1− p)

→Notebook

Probability distributions ▷ TOC ▷ FIN 3.2



Poisson distribution

Represents the number of events occurring in a fixed interval of time or space,
given a constant mean rate of occurrence (e.g., number of emails received in an
hour).

f(k) = P (X = k) =
λke−λ

k!

• P (X = k) represents the probability of observing exactly k events in a fixed
interval

• The term on the right, λke−λ

k! , is the Poisson probability formula:
⋆ λk is the rate of occurrence raised to the power of k, where λ is the average
number of events per interval

⋆ e−λ is the exponential decay factor, accounting for the probability that fewer
events occur as λ increases

⋆ k! is the number of ways to arrange k events
• has an expectation value (mean) E[k] = λ
• has variance Var[k] = λ

→Notebook
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Univariate probability distributions
What about continuous random variables? These can take on an infinite number of
possible values within a given range

Let X represent a continuous random variable

The probability density function f(x) gives the relative likelihood for X to take on
a given value. The probability that X lies within the interval [a, b] is

P(a ≤ X ≤ b) =
∫ b

a
f(x) dx. This is = 1 if the range covers the entire domain

f(x) is a single-valued non-negative number for all x

f has as physical dimension the dimension of 1/x
e.g, probability per meter if x happens to be a length

In these lectures, continuous and discrete distributions typically are loosely referred
to as probability distribution

Let us look at an example of a very important continuous probability distribution
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Normal (Gaussian) Distribution

The Normal distribution, also known as the Gaussian distribution, is probably the
most important continuous probability distribution because it approximates a wide
variety of phenomena

It is defined by its mean µ and standard deviation σ, which determine its centre
and spread, respectively

The probability density function (PDF) of the Normal distribution is given by:

f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2

• Approximately 68, 95, 99.7% of the PDF lies within 1, 2, 3 σ of the mean,
respectively
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Cumulative distribution function (CDF)

The Cumulative Distribution Function (CDF) F (x) of a random variable X is the
probability that X will take a value less than or equal to x: F (x) = P(X ≤ x)

For discrete distributions:

P(X ≤ x) =
∑
xi≤x

P(X = xi)

For continuous distributions:

P(X ≤ x) =

x∫
−∞

f(t)dt
Note: t is a dummy variable of integration used to
calculate the cumulative probability from t = −∞
up to t = x.
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Cumulative distribution function (CDF)

The CDF is non-decreasing

What is the difference between the CDF and the PDF?

• The CDF is the probability that random variable has a value less than or equal
to x: F (x) ≡ P(X ≤ x)

• the PDF is the probability that a random variable X will take a value exactly
equal to x: f(x) ≡ P(X = x) .

For continuous random variables, the PDF can be found by differentiating the CDF

For discrete distributions, we can evaluate the PMF by using the fact that the
PMF is the difference between consecutive values of the CDF

• Specifically, the PMF at a point xi can be obtained by subtracting the CDF
value just before xi from the CDF value at xi: P (X = xi) = F (xi)− F (xi−1)
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Example

Consider a discrete random variable X with the following CDF:

F (x) =


0 if x < 1

0.2 if 1 ≤ x < 2

0.7 if 2 ≤ x < 3

1 if x ≥ 3

The corresponding PMF P (X = x) is:

P (X = 1) = F (1)− F (0) = 0.2− 0 = 0.2

P (X = 2) = F (2)− F (1) = 0.7− 0.2 = 0.5

P (X = 3) = F (3)− F (2) = 1− 0.7 = 0.3

→Notebook
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Moments of a distribution

Moments are used to describe different characteristics of a probability distribution. In
the following, integrals have to be taken over the domain of definition of the PDF

Raw moments (calculated with respect to the origin:

• The n-th raw moment is defined as: µn =
∫
xnf(x) dx

• the first raw moment is the mean µ ≡ µ1 =
∫
xf(x) dx

• the mean is a scalar value, with the same physical dimension as x

Central moments (calculated with respect to the mean)

• The n-th central moment is defined as: mn ≡
∫
(x− µ)nf(x) dx

• the second central moment is the variance σ2 ≡ m2 =
∫
(x− µ)2f(x) dx

⋆ measures the spread of the distribution around the mean

• the third central moment is the skewness ≡ m3/m
(3/2)
2

⋆ measures the asymmetry/lopsidedness of the distribution
• the fourth central moment is the kurtosis ≡ m4/m

2
2

⋆ measures the ”peakedness” of the distribution

While the PDF (or CDF) encapsulates the complete information on a random variable,
moments are often used to summarize a PDF. Note that many PDFs are fully
characterized by a small set of moments
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Quantiles (from inverse CDF)

Definition:

A quantile is a value that divides the range of a probability distribution into
continuous intervals with equal probabilities

Quantiles provide a useful way to understand the distribution

If F (x) is the Cumulative Distribution Function (CDF) of a random variable X,
the p-th quantile xp is defined as:

xp = F−1(p)

where F−1 is the inverse of the CDF (the quantile function)
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Types of Quantiles

Median: The 0.5 quantile (x0.5) divides the data into two equal parts

Quartiles: Values that divide the data into four equal parts:

• x0.25: First quartile (Q1)
• x0.50: Second quartile (Q2), also the median
• x0.75: Third quartile (Q3)

Interquartile Range (IQR): The difference between the third and first quartile
(sometimes used as a measure for the width of a distribution):

IQR = x0.75 − x0.25

Percentiles: Values that divide the data into 100 equal parts

Deciles: Values that divide the data into 10 equal parts
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Example using Quartiles
Example Dataset:

{3, 7, 8, 12, 13, 14, 18, 21, 23, 27}
Calculate Quartiles:

Step 1: Order the data from smallest to largest
(already ordered)

Step 2: Calculate the median Q2 = 13+14
2 =

13.5

Step 3: Calculate the first quartile:

• First half of the data: {3, 7, 8, 12, 13}
• Q1 is the median of the first half: Q1 = 8

Step 4: Calculate the third quartile:

• Second half of the data: {14, 18, 21, 23, 27}
• Q3 is the median of the second half: Q3 = 21

Probability distributions ▷ TOC ▷ FIN 3.12



Most likely value (mode) vs. mean vs. median

Mean: The arithmetic mean of the data

Median: the middlemost value of the given ungrouped data if the data is arranged
in ascending order

Mode: the value that appears most often in the data

Note: for an asymmetric probability distribution, the most likely value, mean and
median are not identical
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Probability distributions in R

Replace in the list by . . .

d: density of PDF

p: probability of CDF∫ x

−∞PDF(x′) dx′

q: quantile
→ inverse CDF

r: (random) generation of
random numbers drawn
from PDF

Example: pnorm(-1)
(by default, pnorm assumes a
variance of one, and mean of
zero)
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Law of large numbers

Let X1, X2, . . . , Xn be a sequence of random variables with E[Xi] = µ and
Var[Xi] = σ2. Let the sample mean be Xn ≡ 1/n

∑n
i=1Xi. Then, for any ϵ > 0

the law of large numbers states

lim
n→∞

P
(∣∣Xn − µ > ϵ

∣∣) → 0 .

In words: As the sample size n increases, the probability that the sample mean Xn

deviates more than ϵ from the true mean µ approaches zero

More simply: For a large enough sample size, the sample mean Xn will be very
close to the true mean of the distribution µ

Important application: the expectation value of a random variable can be approxi-
mated by the arithmetic mean

In practice, one has to average over many events to get close to µ
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