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Overview

Combinatorics

• studies permutations and combinations of objects chosen from a sample space

Error propagation

• how to determine the uncertainty in a result from the uncertainties in the
individual measurements

Calculus of expectations, variances, covariances

• how to calculate expected values and describe relationships between parameters

Conditional and marginal distributions

Probability density functions of particular importance

• normal distribution
• binomial distribution
• Poisson distribution
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Quick introduction to Combinatorics
Multiplication principle: if one experiment has m outcomes and another independent
experiment n outcomes then there are m× n outcomes for the two experiments

Ordering (permutations): the number of possible ways to order r objects (e.g. the
three letters abc) is r!. The “!” sign indicates the factorial function. Note, that by
definition 0! = 1

Selection with replacement, order relevant: the number of ways to draw r objects
from a set of n elements with replacement is nr

Selection without replacement, order relevant: the number of ways to draw r objects
from a set of n elements without replacement is n!

(n−r)!

Selection without replacement, order irrelevant:
(
n
r

)
≡ n!

r!(n−r)! This is the binomial

coefficient

In R, factorial() provides the – well – factorial, choose() provides the binomial
coefficient

What are your chances of winning the Lotto Jackpot?
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Stirling’s approximation and Γ-function

For large n, calculating exact factorials can be computationally expensive and
impractical. Here are some alternatives:

For n ≥ 1, Stirling’s approximation is a good approximation for factorials:

n! ≈
√
2πn

(n
e

)n

alternatively ln(n!) ≈ n ln(n)− n

Note: In R factorials are provided by the function factorial(). It even works
with non-integer arguments!

Γ-function: continuous function closely related
to factorials

Γ(x+ 1) ≡
∫ ∞

0

txe−tdt

so that

Γ(x+ 1) = xΓ(x) and Γ(n+ 1) = n!

The Γ-function is provided by gamma() in R.
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Example: distributing molecules in a box

Setup: A box contains N = 10
molecules which change position
and velocity erratically by colli-
sions with walls and neighbouring
molecules

How many combinations are there with n molecules in the left half of the box?

What is the probability having n = 5 molecules in the left half of the box?

• (You can assume each molecule has equal probability of being in either half)

Combinatorics ▷ TOC ▷ FIN 2.3



Propagation of uncertainties, “error propagation”

Here we are concerned with how to determine the uncertainty in a calculated result
from the uncertainties in individual measurements

Consider a variable y which is a function of several random variables xi, i.e.
y = f(x1, . . . , xn).

If xi are mutually independent random variables with small individual variances σ2
xi

then the Taylor expansion of f gives the variance of y

σ2
y ≈

n∑
i=1

(
∂f

∂xi

)2

σ2
xi

In the case of dependent xi one obtains more generally

σ2
y ≈

n∑
i=1

n∑
j=1

∂f

∂xi

∂f

∂xj
Cov[xi, xj]

where Cov[xi, xj] is the covariance of xi and xj
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Covariance and correlation
covariance measures the joint variability of two random variables x and y
It is defined as

Cov[x, y] ≡ ⟨(x− ⟨x⟩)(y − ⟨y⟩)⟩ = ⟨xy⟩ − ⟨x⟩ ⟨y⟩

• variance is a special case of covariance: σ2
x = Cov[x, x]

correlation measures the linear dependence of variables x and y
The correlation coefficient is defined as

Cor[x, y] ≡ Cov[x, y]

σx σy

• The correlation coefficient ranges from -1 to +1, indicating the strength and
direction of the linear relationship, with 0 meaning no linear correlation

• Cor[x, y] = −1 perfectly anti- or negatively-correlated
• Cor[x, y] = +1 perfectly (positively-)correlated

R functions: covariance cov(), correlation cor()

What is Cor[x, x]? What is Cor[x,−x]? What is Cor
[
x, x2

]
?
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Correlation coefficient: it is good to take a look . . .

(Source: Wikipedia)
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Propagation of uncertainties – the Jacobian

When dealing with functions of multiple variables, it’s crucial to understand how
uncertainties in the input variables propagate to the output variables. This is where
the Jacobian matrix comes in

Consider a vector-valued function y so that

yi(x1, . . . , xn) for i = 1, . . . , n

The Jacobian matrix is a matrix of all first-order partial derivatives of the vector-
valued function y

• When transforming random variables, the Jacobian matrix quantifies how small
changes in the input variables (x1, x2, . . . , xn) affect the output variables
(y1, y2, . . . , yn)

• Thus, it allows us to propagate uncertainties from the input variables to the
output variables
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Propagation of uncertainties – the covariance matrix

J is the Jacobian matrix of the transformation yi(x1, . . . , xn)

J =


∂y1/∂x1 ∂y1/∂x2 · · · ∂y1/∂xn

∂y2/∂x1 ∂y2/∂x2 · · · ∂y2/∂xn
... ... . . . ...

∂yn/∂x1 ∂ym/∂x2 · · · ∂yn/∂xn


Propagation of uncertainties results in

Σ[y] = JΣ[x]JT

where Σ[x] and Σ[y] are the variance-covariance matrices of the random vectors x
and y, respectively

The covariance matrix is symmetric and contains all combinations Cov[xi, xj]

• the diagonal elements of this matrix are the variances and the off-diagonal
elements are the covariances
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Properties of E[], Var[], Cov[, ], rules of calculus
Consider (univariate) random variables X,Y, V,W and real constants a, b, c

Expectation (sample mean) – is a linear operator

E[aX + b Y + c] = aE[X] + bE[Y ] + c

The variance is the ”mean square minus square mean”

Var[X] ≥ 0, and Var[X] = E
[
X2

]
− E[X]

2

Var[X + a] = Var[X]

Var[aX + b Y ] = a2Var[X] + b2Var[Y ] + 2abCov[X,Y ]

Covariance → quick check: sumofvars.R

Cov[X,Y ] = Cov[Y,X], and Cov[X, a] = 0

Cov[aX, b Y ] = abCov[X,Y ]

Cov[X + a, Y + b] = Cov[X,Y ]

Cov[X + Y, V +W ] = Cov[X,V ] + Cov[X,W ] + Cov[Y, V ] + Cov[Y,W ]
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Example problem: determination of location via GPS

Consider the simplified (1D) GPS problem where two transmitters are located at x1

and x2. They emit synchronously a radio pulse. The observer is located at X with
x1 ≤ X ≤ x2, and measures the arrival times of the two signals at t1 and t2 of her/his
time which is not synchronized with the transmitter clocks. The uncertainties of the
time measurements follow a Gaussian PDF, are not correlated, and of the same value
so that σt1 = σt2 ≡ σt.

Use the error propagation to derive an estimate of the uncertainty of the measured
location X, σX, and clock offset T , σT !

Are the derived X and T correlated? What is their correlation coefficient?

→Blackboard & Notebook
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The normal (Gaussian) distribution (revisited)

Nomenclature: symbol “∼” means “distributed as”, e.g. x ∼ N(µ = 0, σ2 = 1)
(N here signifies the normal distribution)

Normal distribution is ubiquitous in statistics. We will see later that:

• the sum of independent random variables, drawn from any distribution with
finite mean and finite variance, is normally distributed (Central Limit Theorem)

• among all distributions with a given mean and variance, the normal distribution
is the one that maximizes entropy, meaning it makes the fewest assumptions
about the underlying data (very useful!)

So important that it made its way onto money bills . . .
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The normal (Gaussian) probability density function

The normal distribution is a continuous probability distribution

It is fully characterised by its mean µ and variance σ2

φ(x) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
with

∫ +∞

−∞
dxφ(x) = 1

where µ represents the mean (or expectation) value and σ2 represents the spread
of the distribution. The normal distribution is symmetric around its mean
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Moments of the normal PDF

As was saw before, for the expectation value and variance we have

µ = E[x] =

∫ +∞

−∞
dxxφ(x)

σ2 = Var[x] = E
[
(x− µ)2

]
Sometimes one needs higher moments:

E
[
x2
]

= µ2 + σ2

E
[
x3
]

= µ3 + 3µσ2

E
[
x4
]

= µ4 + 6µ2σ2 + 3σ4

The normal distribution has skewness (Schiefe) 0 and kurtosis (Wölbung) 3
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The cumulative distribution function of the normal distribution

The Normal PDF is a very “compact” distribution, meaning that the probability
density decreases fairly rapidly as you move away from the mean

• important quantiles (the famous 68.3%, 95.4%, 99.7%, . . .)

Φ(µ+ σ) − Φ(µ− σ) = 0.683
Φ(µ+ 2σ) − Φ(µ− 2σ) = 0.954
Φ(µ+ 3σ) − Φ(µ− 3σ) = 0.997

These quantiles are important in many statistical applications, such as hypothesis
testing and confidence intervals

Use R to calculate the Normal PDF for the range µ− 1.5σ . . . µ+ 1.5σ.

The cumulative distribution function Φ is closely related to the so-called error
function erf (often available in computer languages)

Φ(x) ≡
∫ x

−∞
dt

1

σ
√
2π

exp

[
−(t− µ)2

2σ2

]
=

1

2

(
1 + erf

[
x− µ√

2σ

])
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PDF and CDF for the standard normal distribution

Probability Density Function Cumulative Distribution Function
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Confidence intervals and confidence limits (or bounds)

Uncertainties of measurements (or estimated parameters) can be characterized by
confidence intervals (CI) or one-sided confidence limits (CL)

Confidence intervals express the probability that a parameter lies within a certain
range, while confidence limits express the probability that a parameter lies above
or below a certain limit.

Example: ‘error bars’ in plots: assuming a Gaussian error distribution, the bars
stretch over the interval [µ− σ, µ+ σ]

• in this case the probability of measurement falling into this range is 0.683 (68.3%)
• sometimes, wider confidence intervals are chosen, such as 2σ or 3σ
• the discovery of the Higgs boson was claimed with a 5σ confidence level

Confidence intervals and confidence limits depend on the underlying probability
distribution function (PDF) of the data

They can be visualized by box plots (or box-whisker plots) . . .

• In R, the boxplot() function can be used to create box plots

PDFs of particular importance ▷ TOC ▷ FIN 4.6



Confidence intervals illustrated by box plot

→ boxplot example.R
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Box plot – what is shown?

A box plot (or box-and-whisker plot) is a standardized way of displaying the
distribution of data based on a five-number summary: minimum, first quartile
(Q1), median, third quartile (Q3), and maximum

The simplest input to create a box plot is a numerical vector providing a sample of
values. (The boxplot() function in R is highly configurable)

The box plot shows the following components:

• Median: The median is illustrated by a line inside the box, representing the
middle value of the data when it is ordered

• First and third quartile (Q1 and Q3): These are shown by the boundaries of
the box. Q1 is the lower hinge, and Q3 is the upper hinge. They represent the
25th and 75th percentiles, respectively

• Whiskers: The whiskers extend out to 1.5× the interquartile range (IQR) from
Q1 and Q3. The IQR is the distance between Q1 and Q3.

• Outliers: More extreme points beyond the whiskers are plotted as individual
points. These are values that fall outside of 1.5× IQR from the quartiles.
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The central limit theorem (CLT)

The Central Limit Theorem (CLT) is a fundamental principle in probability theory
and statistics. It states that the sum (or average) of a large number of
independent, identically distributed random variables approaches a normal
distribution, regardless of the original distribution of the variables

If y is the sum of N independent random variables xi, i = 1 . . . N , each drawn
from a distribution with mean µi and variance Var[xi], then the PDF for y . . .

• has an expectation value of E[y] =
∑N

i=1 µi

• has a variance Var[y] =
∑N

i=1Var[xi]

• becomes Gaussian in the limit N → ∞

Again, we note that none of the original distributions are required to be Gaussian

• some technical restrictions apply: the sum giving y should not be dominated by
one distribution, and means and variances must exist

This explains the ubiquity of Gaussian distributions in natural and social phenomena
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The central limit theorem (CLT)

If z is the average of N independent random variables z = 1
N

∑N
i=1 xi it follows

that

• the expectation of z is E[z] = 1
N

∑N
i=1 µi

• the variance of z is Var[z] = 1
N2

∑N
i=1Var[xi]

• the standard deviation of z is σz =
√
Var[z] = 1

N

√∑N
i=1 σ

2
i , with σi =

√
Var[xi]

• z becomes distributed according a Gaussian PDF in the limit N → ∞

• If all of the xi come from the same distribution with mean µ and variance
σ2, then setting µi = µ and σi = σ, we obtain E[z] = 1

NNµ = µ and

Var[z] = 1
NNσ2 = σ2

N or σz =
σ√
N

• This means that if we take repeated measurements of a quantity, each having
the same uncertainty, when we average over all measurements the uncertainty
will be reduced by 1/

√
N

• (The demonstration of the CLT will be left to you in the exercise sheet)
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The Poisson distribution (revisited)

The Poisson distribution plays
a role whenever events are
counted that happen at ran-
dom but with a certain mean
rate λ (e.g. number of emails
received per day)

For large λ the Poisson distri-
bution – in particular around
its maximum – begins to re-
semble a Gaussian distribution

Since the Poisson distribution is discrete while the normal distribution is continuous
we have to be mindful what we mean by ‘resembles’. In short, for large λ, the
Poisson PMF can be approximated by a Normal PDF with mean λ and variance λ:

e−λλk

k!
≈ 1√

2πλ
exp

[
−(k − λ)2

2λ

]
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Example: histograms and Poisson statistics

Histograms are graphical representations of probability density functions (PDFs)
created by counting the number of events falling into discrete bins

Whether an event falls into a particular bin is governed by a binomial distribution

• The expectation value of the number of counts depends on the PDF of the
underlying distribution being measured

When the number of counts in each bin is relatively large, the binomial distribution
can be approximated by a Poisson distribution

• This approximation is valid because the Poisson distribution is the limiting case
of the binomial distribution when the number of trials is large

• If N counts fall into a bin, the Poisson distribution tells us that the standard
deviation of the count is

√
N

• This provides an explanation and prediction of the observed/expected “noise”
in histograms. It helps to judge whether a histogram is compatible with the
assumption that a particular PDF underlies the data

→Notebook Poisson histogram.ipynb
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Multivariate (multi-dimensional) distributions

When we have multiple variables we are often interested in their joint probability
distribution

Describe the probability that a continuous random vector (X,Y ) lies in a particular
region in the domain of definition (2-D distribution):

P((X,Y ) ∈ A) =

∫∫
A

f(x, y) dx dy

• P((X,Y ) ∈ A) denotes the probability that the random vector (X,Y ) lies within
a particular region A (a subset of the 2-D plane)

• f(x, y) is the joint probability density function, which describes the probability
density for the random variables X and Y simultaneously

• analogously, for discrete distributions, the joint probability mass function
describes the probability that the random vector takes on a specific set of values

• as usual: f(x⃗) ≥ 0, and normalization
∫
D
f(x⃗) dx⃗ = 1, where D represents the

entire 2-D plane for the bivariate case considered
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Multivariate (multi-dimensional) distributions

The joint cumulative distribution function F (x, y) = P(X ≤ x, Y ≤ y), for
(x, y) ∈ A, is given by:

Continuous random vector:

F (x, y) =

∫ x

−∞
du

∫ y

−∞
dv, f(u, v)

with u, v being dummy integration variables

• From this, we derive the relationship between the joint probability density
function and the joint cumulative distribution function

f(x, y) =
∂2

∂x∂y
F (x, y)

Discrete random vector:

F (x, y) =
∑
xi≤x

∑
yj≤y

P(X = xi, Y = yj)
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Example: the bivariate Gaussian distribution

For a continuous random vector x⃗ =

(
x
y

)
, the bivariate Gaussian distribution is

defined by:

• its mean vector µ⃗ =

(
µx

µy

)
• its covariance matrix C =

(
σ2
x ρσxσy

ρσxσY σ2
y

)
where ρ is the correlation coefficient

The joint probability density function (PDF) for the bivariate Gaussian distribution
is given by:

P (x, y) =
1

2π
√
|C|

exp

(
−1

2
(x⃗− µ⃗)TC−1(x⃗− µ⃗)

)

The exponent term (x⃗ − µ⃗)TC−1(x⃗ − µ⃗) represents the Mahalanobis distance
between x⃗ and the mean µ⃗ (In R, one can use the mahalanobis() function)
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Example: the bivariate Gaussian distribution

For simplicity, let’s use a standard bivariate normal distribution with µ⃗ =

(
0
0

)
and

C =

(
1 0
0 1

)
The probability density function for the standard bivariate normal distribution is
then simply:

P (x, y) =
1

2π
exp

[
−1

2
(x2 + y2)

]
What is the shape of contours of constant probability density?

→Notebook 2DGaussian.ipynb
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Marginal distributions, independence, conditional probability

The joint probability density for (X,Y ) allows to express the probability of – say –
X irrespective of any value of Y as

fX(x) =

∫ ∞

−∞
f(x, y) dy

and analogously for Y

fY (y) =

∫ ∞

−∞
f(x, y) dx

• fX(x) and fY (x) are the marginal distributions associated with f(x, y)
• marginal distributions are obtained by integrating out the other variables
• in higher dimensions there are more combinations possible, i.e., combinations of
what one wants to “integrate (or marginalize) out”

• in general, the marginal distributions do not fully determine the joint distribution

For cumulative distributions the formulae above also hold, and in particular

fX(x) =
d

dx
FX(x)
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Marginal distributions, independence, conditional probability

Random variables X and Y are independent if and only if

f(x, y) = fX(x)fY (y) or F (x, y) = FX(x)FY (y)

• for independent random variables the joint probability distribution factorizes with
the marginal distributions as factors

• P(a1 < X ≤ b1, a2 < Y ≤ b2) = PX(a1 < X ≤ b1) · PY (a2 < Y ≤ b2)

;
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Marginal distributions, independence, conditional probability

The joint probability density for (X,Y ) allows us to express the conditional
probability of – say – Y given a particular value of X as

fY |X(y|x) = fXY (x, y)

fX(x)

The joint probability density can be correspondingly expressed as

fXY (x, y) = fY |X(y|x) fX(x)

Integrating both sides over x gives

fY (y) =

∫ ∞

−∞
fY |X(y|x) fX(x) dx

which is just an expression of the law of total probability - here for the continuous
case

As you may already expect: the relations given here for bivariate distributions have
a direct correspondence with the calculus of probability we discussed previously
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The multivariate (m-dimensional) normal distribution

The only case of a multivariate PDF we will explore during the course

Describes the joint probability distribution of m continuous random variables xi,
i = 1 . . .m. For the random vector x⃗ and its expectation value, we have

x⃗ =


x1

x2
...

xm

 and µ⃗ ≡


µ1

µ2
...

µm

 = E[x⃗]

The covariances among the xi are given by the symmetric m × m covariance
matrix C, with components

Cij = Cov[xi, xj] = E[(xi − µi)(xj − µj)] = Cji

• due to its symmetry C has only m(m+ 1)/2 independent components

From the definition of the covariance matrix we see

Cii = E
[
(xi − µi)

2
]
= σ2

i

Multivariate distributions ▷ TOC ▷ FIN 5.8



The multivariate (m-dimensional) normal distribution

The correlation coefficient between xi and xj (i ̸= j) is

ρij ≡ Cor[xi, xj] =
Cij√
CiiCjj

With this, the covariance matrix can be written as

Cij =

{
σ2
i if i = j

σiσjρij if i ̸= j

Having the parameters µi, σi, ρij(i = 1 . . .m, j = 1 . . .m) the PDF is

φ(x⃗) = (2π)−m/2det(C)−1/2 exp

[
−1

2
(x⃗− µ⃗)TC−1(x⃗− µ⃗)

]

where det(C) is the determinant of C and T indicates the transpose.
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The multivariate (m-dimensional) normal distribution

The covariance matrix C is positive definite meaning that it is symmetric and
intertible and that a⃗TCa⃗ > 0 for all non-zero vectors a⃗ of length m. This implies
(among other things). . .

• det(C) > 0 and C−1 exists and is also positive definite
• (x⃗ − µ⃗)TC−1(x⃗ − µ⃗) ≥ 0 and the multivariate PDF reaches its maximum at
x⃗ = µ⃗

In case that all xi are uncorrelated (ρij = 0) C becomes diagonal with

Cij =

{
σ2
i if i = j

0 if i ̸= j

and the PDF becomes

φ(x⃗) =

m∏
i=1

(2π)−1/2σ−1
i exp

[
−1

2

(
xi − µi

σi

)2
]

i.e. a product of univariate normal PDFs N(µi, σ
2
i )
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The multivariate (m-dimensional) normal distribution

Why is this important?

• as we will see: multidimensional PDFs often look similar to multivariate normal
distribution around their maxima

Plot of 10,000 random samples (x, y) drawn from a bivariate (2D) normal
distribution with σ2

x = σ2
y = 1 and different correlation coefficients ρ. The density of

points is proportional to the value of the PDF.
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The multivariate (m-dimensional) normal distribution

As you may guess: all conditional and marginal distributions of a multivariate
normal distribution can be expressed analytically. Moreover . . .

• all possible marginal distributions are again multivariate normal distributions
(of lower dimension since some vector components are marginalized out)

• all possible conditional distributions are multivariate normal distributions

Towards the end of the course we will come back to this with explicit formulae, but
for now just note that:

• In multiple dimensions, the central limit theorem suggests that the sum of many
independent random variables, regardless of their original distributions, tends to
a multivariate normal distribution

• These concepts are central to Gaussian processes, which rely heavily on the
properties of multivariate normal distributions

• Many maximum likelihood estimates in regression and machine learning assume
multivariate normality of the data
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