
Statistical Methods
(summer term 2024)

Monte Carlo Techniques

(based on original lectures by Prof. Dr. N. Christlieb and Dr. Hans-G. Ludwig)

Dr Yiannis Tsapras

ZAH – Heidelberg

Monte Carlo Techniques 0.1

Overview

Monte Carlo simulation “light”: means to test a statistic

• properties of estimators

Monte Carlo integration

• how does it work?
• why use it?
• what accuracy can be achieved?

Random numbers, sampling from arbitrary distributions

• exact inversion
• rejection method
• Metropolis-Hastings algorithm

Monte Carlo integration based on lecture notes of Volker Springel
(see Notes MC.pdf on web)

Refer to ”Numerical Recipes” for comprehensive coverage of MC integration

Overview ▷ TOC ▷ FIN 1.1

What are Monte Carlo (MC) methods?

Monte Carlo methods are a class of techniques for randomly sampling a probability
distribution

There are many problems in probability, and more broadly in machine learning,
where we cannot calculate an analytical solution directly

The basic idea of MC is to draw samples randomly from the underlying probability
distribution and use them to approximate the desired quantity

Applications of MC methods include:

• Numerical integration
• Optimization problems
• Simulating physical and mathematical systems . . .

Key components of MC:

• Random number generation
• Sampling from probability distributions
• Statistical analysis of results

Overview ▷ TOC ▷ FIN 1.2

Monte Carlo simulation as means to test a statistic

Growing computing power made Monte Carlo methods increasingly important in
statistics

Here: testing a statistic (function of the random values of a given sample)

• basic idea: simply try it out
• avoids problems of analytical treatment, e.g. sometimes only asymptotic results
for large sample sizes can be obtained

• in principle, it can provide exact properties
• disadvantage: an MC simulation is a statistical procedure and one needs to
control for random errors

In practice, one needs to work with sufficiently large samples to minimize errors

• but how large is sufficiently large?
• simplest approach: repeat MC simulation with different random numbers and
see up to which precision results remain the same

• more rigorously: use the numerical PDF of the statistics one usually obtains
in an MC run; from the PDF one can derive estimates of the variance of the
quantity of interest

MC simulations for tests of statistics ▷ TOC ▷ FIN 2.1

Properties of a statistic (or estimator)

Consider a sample x1, . . . , xn drawn from a population characterized by some
parameters (e.g. normal distribution by mean µ and variance σ2)

A statistic (Schätzfunktion) or estimator (Schätzer) is a function g(x1, . . . , xn) of
the sampled values for a parameter u of the population

An estimator g(x1, . . . , xn) of a parameter u is . . .

• consistent (dt. konsistent) if limn→∞ g(x1, . . . , xn) = u
• e.g. Suppose g(x1, . . . , xn) is the sample mean x̄. As n → ∞, x̄ approaches the
population mean µ
For large n the estimate approaches the true value of the parameter

• unbiased (dt. erwartungstreu) if E[g(x1, . . . , xn)] = u
• e.g. for the sample mean x̄, the expectation E[x̄] = µ, making it an unbiased
estimator of µ
Independent of sample size, the estimate corresponds on average to the true
value

MC simulations for tests of statistics ▷ TOC ▷ FIN 2.2

Properties of a statistic (or estimator)

An estimator g(x1, . . . , xn) of a parameter u is . . .

• (relatively) efficient (dt. wirksam) if E
[
(g(x1, . . . , xn)− u)2

]
is small/smallest

• e.g. The sample variance S2 is efficient if it has a smaller mean square error
compared to other estimators of the population variance σ2

On average, the mean square deviation between estimated and true value is
small. Sometimes, the term “efficient” is reserved for the estimator for the
smallest variance as given by the relation above

• robust if the estimate is weakly influenced by outliers, i.e. samples which were
in fact not drawn from the assumed population

• e.g. The sample median is robust because it is less influenced by extreme values
(outliers) compared to the sample mean

In MC simulations the expectation values can be computed (or rather estimated)
as averages over a sufficiently large number of realizations

MC simulations for tests of statistics ▷ TOC ▷ FIN 2.3

Why divide by n− 1 and not n for the sample variance?

Having a sample x1, . . . , xn drawn from a population, one can estimate the true
mean µ of the underlying PDF of the whole population by using the sample mean
x̄

x̄ =
1

n

n∑
i=1

xi

Furthermore, one can get an estimate of the true variance σ2 of the population, by
using the sample variance S2

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Why do we use n− 1 here?

Answer: this makes the estimator unbiased !

(proof → blackboard)

MC simulations for tests of statistics ▷ TOC ▷ FIN 2.4

Example: comparison of various estimators for the variance of
populations with normal or uniform distributions

Compare the following four estimators for the variance of two populations: the first
is normally distributed N(0, 1), the other uniformly distributed U(0, 1)
(→ MCexample4.R)

S2 =
1

n+ k

n∑
i=1

(xi − x̄)2 with k = −1, 0,+1,+2

The population mean µ is estimated from the sample mean x̄ via x̄ = 1
n

∑n
i=1 xi

Use n = 5 and 100000 realizations; the R-functions matrix(), rowSums(),

colSums(), rowMeans(), colMeans() are your friends

How large is the bias of the estimators? Is there an unbiased estimator among
them?

Which estimator is most efficient?

Which estimator would you choose to estimate the population variance?

MC simulations for tests of statistics ▷ TOC ▷ FIN 2.5

Monte Carlo integration

What is Monte Carlo Integration?

• Monte Carlo integration is a statistical technique used to evaluate the integral
of a function over a given domain using random sampling

How does it work?

• randomly sample points within the domain and evaluate the function at these
points

• The integral is approximated by the average value of the function at the sampled
points, multiplied by the volume of the domain

Monte Carlo integration is particularly useful for high-dimensional integrals where
traditional numerical integration methods become inefficient or impractical

Random number generation and sampling from probability distributions are crucial
components

• Statistical analysis of the results to estimate accuracy and error

MC integration ▷ TOC ▷ FIN 3.1

Basic idea of MC integration

Intuition: “dartboard method” of integrating the area of an irregular domain

Choose points randomly (i.e. uniformly) within the box

• Count the number of points that fall inside the shape

The probability that a point lands inside the area is given by the ratio of the areas:

p(point lands inside area) =
Ashape

Abox

MC integration ▷ TOC ▷ FIN 3.2

Basic idea of MC integration

We can now approximate this probability, and hence the area ratio, through the
experimental result:

Ashape

Abox
≃ #points landed in shape

#points landed in box

This is expected to become arbitrarily accurate as the number of trials goes to
infinity

This method can be used to integrate functions over more complex domains

MC integration ▷ TOC ▷ FIN 3.3

Why is MC integration useful?

Comparison of Integration Methods:

• Regular Tiling: Divides the domain into regular, equal-sized surface elements
• Monte Carlo Tiling: Uses random sampling to represent surface elements
• Each MC sample represents a small surface element (e.g., 400 samples)
• Smaller surface elements can better follow curved shapes
• MC samples leave gaps and often overlap→does not provide a nice representation
of the Riemann-sum underlying integration

MC integration ▷ TOC ▷ FIN 3.4

Why is MC integration useful?

So why consider using MC Integration at all?

• Extremely effective for high-dimensional integrals where regular methods become
impractical

• Flexibility in handling complex and irregular domains
• Statistical properties allow for error estimation and confidence intervals

MC integration ▷ TOC ▷ FIN 3.5

Standard Monte Carlo integration

Formally: Consider the integral in d-dimensions:

I =

∫
V

f(x⃗) ddx⃗

where V is a d-dimensional hypercube with dimensions [0, 1]d for simplicity

Procedure:

• Generate N random vectors x⃗i with components drawn uniformly from the
interval [0, 1]. Each component of the vector is drawn independently from a
uniform distribution

• Approximate the integral IN by summing the function values at these random
points. Each sample represents a volume element of size V/N :

IN =
V

N

N∑
i=1

f(x⃗i)

• As N → ∞, the approximation IN converges to the true integral I

MC integration ▷ TOC ▷ FIN 3.6

Standard Monte Carlo integration

Uncertainty (‘error’) Estimation:

• The uncertainty of the result scales as 1/
√
N , which is independent of the

number of dimensions of the integral
• This means that even for high-dimensional integrals, the accuracy of Monte
Carlo integration improves as the number of samples increases

Let’s see how that compares with non-MC integration...

MC integration ▷ TOC ▷ FIN 3.7

Comparison with non-MC integration

Divide each dimension in n regularly spaced intervals, hence N = nd

Depending on the integration rule the error will scale as some power of 1/n

• midpoint rule, horizontal line through f(a+b
2), error ∝ 1/n2

• trapezoidal rule, secant through f(a) and f(b), error ∝ 1/n2

• Simpson’s rule, parabola through f(a), f(a+b
2), f(b), error ∝ 1/n4

d small → MC integration has larger errors than standard methods with same N

d large→MC integration advantageous, standard methods can spend comparatively
fewer regular sampling points per dimension

Example: at what point is MC as good as midpoint?

Cmidpoint

N2/d
≈ CMC

N1/2

• starts to decline with N more weakly than MC integration when d ≳ 4

MC integration only option for high dimensional problems (e.g. thermodynamics)

MC integration ▷ TOC ▷ FIN 3.8

‘Error’ estimate in Monte Carlo integration

Let y ≡ V f(x⃗) and yi = V f(x⃗i) is the value of the i-th function evaluation in the
MC integration; each yi estimate of integral

• reminder: V represents the volume of the integration domain

Taking N uniformly distributed samples, the desired integral is approximated by

IN =
y1 + y2 + . . .+ yN

N

Concerning the numerical error, one may ask

• does IN provide an accurate approximation to the integral of f?
• what is the difference between IN and the actual integral of f?

Statistically speaking, if we repeat the MC integration a large number of times . . .

• what is the expectation value of the distribution of IN
• what is the variance of the distribution of IN → blackboard

MC integration ▷ TOC ▷ FIN 3.9

‘Error’ estimate in Monte Carlo integration

IN is the sum of identically distributed random variables (divided by N)

For large N the central-limit-theorem gives the answer: With

y = V f(x⃗)

we have

⟨y⟩ = ⟨V f⟩ = V ⟨f⟩ = I and Var[y] = Var[V f] = V 2Var[f] ,

so that

IN ≈ N ⟨y⟩
N

= I and Var[IN] ≈ N Var
[y
N

]
=

Var[y]

N
=

V 2

N
Var[f]

This involves the exact moments of f ⟨f⟩ and
〈
f2

〉
which can be estimated from

the MC samples . . .

MC integration ▷ TOC ▷ FIN 3.10

Summary on ‘Error’ estimate in Monte-Carlo integration

For standard Monte Carlo integration with N samples, the error is

σIN = V

√
⟨f2⟩ − ⟨f⟩2

N

where ⟨f⟩ and
〈
f2

〉
are exact moments of the function we integrate, i.e.

⟨f⟩ ≡ 1

V

∫
f(x)dx

〈
f2

〉
≡ 1

V

∫
f2(x)dx

In practice we can estimate these moments from the Monte-Carlo samples them-
selves, i.e. we estimate

⟨f⟩ ≈ 1

N

∑
i

f(xi)
〈
f2

〉
≈ 1

N

∑
i

f2(xi)

and then use these moments to estimate the error σIN

MC integration ▷ TOC ▷ FIN 3.11

Interlude: generating random numbers

Random numbers play a central role in Monte Carlo techniques

Usually, they are produced by deterministic algorithms leading to pseudo-random
numbers, and are suitable for MC techniques (use same seed value→reproducibility)

Truly random numbers, on the other hand, are generated by some physical process
(like rolling the dice, radioactive decay, quantum transitions, etc.).

Some CPUs include a hardware random number generator, based on coupled
non-linear oscillators and additional sources of entropy

• These generators are normally not used for MC techniques, because . . .
⋆ sequence is not repeatable, making debugging difficult and preventing repro-
ducibility

⋆ they tend to be slow(er)
⋆ the quality of the distribution may not be perfect
⋆ the quality of the distribution may degrade with time, or correlate in subtle
ways with environmental factors such as system temperature, etc.

MC integration ▷ TOC ▷ FIN 3.12

Interlude: generating random numbers

There is value in having good random numbers. In 1950, the RAND corpora-
tion published a book entitled “1 million random digits”, whose primary virtue
is to contain no discernable information at all. This classic is available online
(http://www.rand.org/publications/classics/randomdigits). While it may
not be fun to read, it serves as an important historical reference in the generation of
random numbers.

MC integration ▷ TOC ▷ FIN 3.13

Interlude: pseudo-random number generators

Usually create an integer sequence that is then converted to a floating point number
in the interval [0, 1]

Essential desirable properties of a good random number generator . . .

• repeatability: for the same seed, we want to obtain the same sequence of random
numbers

• randomness: good random numbers should be. . .
⋆ uniformly and homogeneously distributed in the interval [0, 1]
⋆ independent of each other, i.e. show no correlations whatsoever (this is non-
trivial and not exactly true for pseudo-random number generators)

• speed: sometimes billions of random numbers needed
• portability: same results on different computer architectures
• long period: after a finite number of pseudo-random numbers, the sequence
repeats. This period should be as large as possible to avoid repeated patterns

• insensitivity to seed: neither the period nor the quality of the randomness should
depend on the value of the seed, i.e. on where the sequence is started

Moral: random number generation is a non-trivial task. In case of doubt, one needs
to test a generator. We won’t go deeper into the details here

MC integration ▷ TOC ▷ FIN 3.14

Interlude: random sequences and random numbers in R

sample() draws a sample from a population with or without replacement

sample(10) # sample a permutation of numbers 1 to 10

sample(x=10, size=3) # draw 3 samples from 1 to 10 (no replacement)

sample(x=10, size=3) # draw another 3 samples (no replacement)

set.seed(100) # controls the (pseudo) random number sequence

sample(x=10, size=3) # draw 3 samples <- uses seed (no replacement)

set.seed(100) # reset pseudo randon number generator

sample(x=10, size=3) # draw the same 3 samples (reprodicibility)

sample(c(1,5,8,13,6,27), size=4) # draw 4 from given vector (no repl.)

sample(c(1,5,8,13,6,27), size=4, replace=TRUE) # draw 4 with replace

Using set.seed() is crucial for reproducibility in simulations. By setting the same
seed, you ensure that the random number sequence is identical each time, which is
essential for debugging and replicating results

Try it out!

MC integration ▷ TOC ▷ FIN 3.15

Interlude: random sequences and random numbers in R

Sampling from a probability density distribution p(x)

• pick x with a probability p(x)dx (→ drawing)

R provides random variables from the standard univariate PDFs using functions like
rnorm, runif, rbinom, rpois, , ...

x <- rnorm(1000, mean=2, sd=0.5)n # draw 1000 samples

library(MASS) # load necessary library for histograms

truehist(x, ylim=c(0,1)) # plot histogram of samples

line(x, dnorm(x, mean=2, sd=0.5)) # overplot the true distr.

curve(dnorm(x, mean=2, sd=0.5), add=TRUE, col="blue", lwd=2)

To generate random variables from a multivariate normal distribution, use:
mvrnorm{MASS} or rmvnorm{mvtnorm}

Try it out!

MC integration ▷ TOC ▷ FIN 3.16

Example 1: standard Monte Carlo (MC) integration
Compute the integral

I =

∫ 1

0

f(x) dx =

∫ 1

0

(
x−1/3 +

x

10

)
dx

by standard MC integration. The integral can be solved analytically and has the value
I = 31/20 ≈ 1.550, so we don’t really need MC integration here. However, we can
test the numerical result. The variance of the integrand turns out to be ≈ 0.849 so
that we expect for the standard deviation of the width of the distribution of I

σI =

√
⟨f2⟩ − ⟨f⟩2

N
≈ 0.849√

N
.

Plot the function f . Are there any problems?

Set the number of samples to N = 10000 and perform M = 1000 Monte Carlo
integrations. Plot the histogram of integrals and estimate the dispersion. Does it
correspond to the analytical expectations? (→MCexample1.ipynb)

Does the integral evaluate correctly?

Hint: the functions hist(),mean(),sd(),runif() may help

MC integration ▷ TOC ▷ FIN 3.17

Interlude: Drawing from arbitrary distributions

As we shall see, we sometimes need to draw from arbitrary distributions

While programming environments offer a limited number of well-known distribu-
tions (e.g., normal, uniform, binomial), they might not be sufficient for specific
applications

There are various methods for generating samples from a given distribution:

• Inverse Transform Sampling: Uses the cumulative distribution function (CDF)
to generate samples

• Rejection Sampling: Uses a proposal distribution and accepts/rejects samples
based on a criterion

• Importance Sampling: Weights samples according to their importance in the
target distribution

• Markov Chain Monte Carlo (MCMC): Generates samples by constructing a
Markov chain that has the desired distribution as its equilibrium distribution

Each method has its own advantages and use cases depending on the properties of
the distribution and the computational resources available

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.1

Exact Inversion of Cumulative PDF
Available: samples xi from distribution p1(x)

Needed: samples yi from distribution p2(y)

Looking for function y(x) that transforms xi into yi, such that p2(y) = p1(x(y))

PDFs satisfy conditions
∫
p(x) dx = 1 and p(x) ≥ 0 for all x. Conservation of

probability (or the value of the integral) can be stated as

|p1(x) dx| = |p2(y) dy| → functional determinant

(here a modulus has been added to neutralize a possible sign change due to the
mapping)

The cumulative distribution functions (CDFs) for p1(x) and p2(y) are given by:

F1(x) =

∫ x

−∞
p1(u) du F2(y) =

∫ y

−∞
p2(v) dv

with u, v as dummy variables of integration

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.2

Exact Inversion of Cumulative PDF
Matching CDFs: Since F1(x) and F2(y) are the cumulative probability distribution
functions of p1 and p2, respectively, they must be equal for corresponding x and y
values: F1(x) = F2(y)

• The key idea here is that the CDFs of the initial and target distributions are
related

To find y corresponding to x, we use the inverse CDF (quantile function) of the
target distribution, so that

y = F−1
2 [F1(x)]

If p1(x) is a uniform distribution in [0, 1], then F1(x) = x, so the transformation
simplifies to:

y = F−1
2 (x)

Unfortunately, the inversion of P2 cannot always be carried out algebraically, but if
this is possible, this is the method of choice

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.3

Exact Inversion of Cumulative PDF (in simple terms)

Start with Samples:

• Begin with samples from a known distribution (e.g., uniform distribution)

Calculate CDF:

• Compute the CDF of the known distribution

Find Target CDF:

• Use the target distribution’s CDF and find its inverse

Transform Samples:

• For each sample from the initial distribution, use the inverse CDF of the target
distribution to get the corresponding sample

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.4

Exact inversion of cumulative PDF, now graphically

F
ig
u
re

fr
om

N
u
m
er
ic
a
l
R
ec
ip
es

We want: p(y)

• calculate F (y) =
∫ y

0
p(v)dv

• uniformly sampled xi are transformed to

yi = F−1(xi)

Note, how gradient dF/dx = p controls density of samples on y-axis

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.5

Exact inversion of cumulative PDF

Further tricks possible

• Example in R: →inversion of cdf demo.ipynb

• classical example: usage of 2D polar coordinates in the so-called Box-Muller
procedure for Gaussian samples

Box-Muller transformation →Blackboard

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.6

Importance sampling

Common problem of MC integration: The integrand is very small over most of the
integration volume, e.g., if the integrand is sharply peaked

Idea of importance sampling : choose random points preferentially around the
peak, selecting fewer points where the integrand is small

• should be more efficient and help to reduce the error for a given number of
points

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.7

Importance sampling
Assume we want to integrate (here in 1D for simplicity)

I =

∫ b

a

f(x) dx,

Suppose we choose a probability distribution p(x) that is:

• Close to the function f(x)
• Simple enough to generate x-values from this distribution
• Has its domain of definition [a, b]

We can change variables as y = P (x) and dy = p(x)dx:

I =

∫ b

x=a

f(x)

p(x)
p(x)dx =

∫ 1

y=0

f(P−1(y))

p(P−1(y))
dy

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.8

Importance sampling

Approximating with Monte Carlo integration:

I ≈ 1

N

N∑
i=1

f(P−1(yi))

p(P−1(yi))
=

1

N

N∑
i=1

f(xi)

p(xi)

Here, y ∼ U(0, 1) as in standard MC integration. Note the change of the interval
boundaries. The last equality comes from transforming between random samples
so that x ∼ p(x), i.e., samples drawn from the distribution p(x)

Because f/p is flatter than f if the shape of p is similar to that of f , the variance
of f/p will be smaller than the variance of f , i.e. we obtain a smaller error for a
given number of samples N

IN =
1

N

∑
i

f(xi)

p(xi)
.

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.9

Importance sampling

The error estimate from before carries over to the function f
p :

σIN =

√
⟨f2/p2⟩ − ⟨f/p⟩2

N

• reasoning as before: appeal to the Central Limit Theorem

Importance sampling is an example from the family of methods related to the
reduction of variance

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.10

Importance sampling

Ideal choice: p(x) ∝ f(x)
(in fact p(x) ∝ |f(x)|) but let’s assume f is positive everywhere

What would be the integration error in this case?

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.11

Importance sampling

Ideal choice: p(x) ∝ f(x)
(in fact p(x) ∝ |f(x)|) but let’s assume f is positive everywhere)

What would be the integration error in this case?

And why doesn’t this work?

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.12

Importance sampling

Moral: pick a distribution p(x) that you can normalize and sample from!

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.13

Importance sampling and estimating moments of distributions

Consider a sample {xi} of N values drawn from a population with probability
distribution p(x). The expectation value E[x] of the distribution is usually estimated
by the sample mean as

E[x] ≡
∫ +∞

−∞
x p(x)dx ≈ 1

N

N∑
i=1

xi

Formula can be interpreted as a MC integration with importance sampling

This carries over to higher moments

MC error formula applies here for the estimation of the population moments.

• The standard error of the mean, for instance, is given by: σx̄ = σ/
√
N , where

σ is the standard deviation of the population

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.14

Example 2: Monte Carlo integration with importance sampling

Repeat Example 1 with importance sampling, using the sampling probability

p(x) =
2

3
x−1/3

over the interval 0 < x ≤ 1.
Note that p(x) captures part of the shape of f(x), while being simple enough to allow
a creation of properly sampled points by direct inversion
For the standard deviation of g ≡ f/p one gets

σI =

√
⟨g2⟩ − ⟨g⟩2

N
≈ 0.0448√

N
.

This is nearly 20 times better than obtained with plain sampling in Exercise 1.

Can you confirm this expectation numerically?

Plot the function g!

Does the integral come out correctly? (→ MCexample2.ipynb)

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.15

Rejection sampling (von Neumann 1951)

F
ig
u
re

fr
om

N
u
m
er
ic
a
l
R
ec
ip
es

p(x) is the desired random number distribution, and f(x) is a distribution that we
can create. f should obey

p(x) ≤ f(x) ∀x

Then the method proceeds as follows:

1. Generate trial random point x0 drawn from distribution f(x) (see inversion method)

2. Generate a sample y from a uniform distribution with the bounds 0 ≤ y < f(x0)

3. Acceptance step: If y ≤ p(x0) return x0 as a sample value

4. Otherwise, i.e. for y > p(x0) reject the trial value for x0 and repeat from step 1

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.16

Rejection sampling

The basic idea is to define a simpler function f(x) that we can draw samples
from, but we only accept a sample to our set with a certain probability p(x)/f(x),
otherwise we reject it

Advantages: works in any dimension, p(x) need not be normalized

Disadvantages: potentially low efficiency if many samples are rejected (actually
gets worse for higher dimensions of p(x))

Drawing from arbitrary distributions ▷ TOC ▷ FIN 4.17

Sampling with a stochastic process

Sometimes neither direct inversion nor the rejection method can be readily used to
sample from a given distribution function p(x)

Another idea: construct p(x) through a stochastic process that has p(x) as its
equilibrium distribution

This involves a random walk in parameter space, tailored so that the probability to
be at x is proportional to p(x) (so that regions of higher probability density are
preferentially explored)

This is known as a Markov process, generating a Markov Chain

A Markov Chain is a discrete sequence of states

x1
f−−→ x2

f−−→ x3
f−−→ . . .

f−−→ xn

The function f is a random update operator

• e.g., in 50% of the updates,the process moves left, otherwise it moves right

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.1

Sampling with a stochastic process

Characterizing property of a Markov process: The defining property of a Markov
process is that the transition probability Wf from one state to the next state in the
chain

Wf(x → x′) = Wf(x
′|x),

depends only on the current state

• the history of the process does not influence the transition probabilities
• this makes Markov chains particularly simple and efficient
• the function f can mediate small or large updates

The transition probability must satisfy∫
Wf(x → x′) dx′ = 1 and Wf(x → x′) ≥ 0

• this ensures the “walking entity” does not disappear, maintaining the conserva-
tion of probability

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.2

Sampling with a stochastic process

Applying the transition probability to an entire probability distribution (or ensemble
of walkers), the new probability distribution after one transition is:

p(x)
f−−→ p′(x′) =

∫
p(x)Wf(x → x′) dx.

Two essential properties make the Markov process powerful:

1. f must preserve p(x) as an equilibrium distribution, meaning p(x) is a fixed
point of f . This requires

p(x′) =

∫
p(x)Wf(x → x′) dx.

2. Starting from any state x, repeated applications of f must be able to approach
any other state x′. This is known as the ergodic property

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.3

Sampling with a stochastic process

Two important results follow from ergodicity and existence of an equilibrium
distribution:

• Any ensemble of states approaches the equilibrium distribution if f is applied
sufficiently often

• The collection of states in a single Markov chain under the action of f approaches
p(x) as the number of steps goes to infinity

Obvious question: how often is “sufficiently often”?

• In practice, this depends on the specific problem and the properties of f
• Techniques such as monitoring the convergence of sample statistics and diag-
nostic tools like trace plots can be helpful

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.4

Condition of detailed balance

Almost all of the commonly used update steps follow the detailed balance condition
at equilibrium

p(x) ·Wf(x → x′) = p(x′) ·Wf(x
′ → x)

What does this mean?

Detailed balance ensures that the probability flow from x to x′ is balanced by the
flow from x′ to x, maintaining equilibrium

If detailed balance holds, it is easy to show that p(x) is a fixed point under f . For
other choices of f , this might still be true but could be more challenging to prove

Detailed balance and ergodicity are already sufficient conditions for a Markov chain
to sample from peq(x). However, we need to find a concrete realization of Wf .

Key question now:
How do we set the transition probability Wf to fulfil the detailed balance condition?

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.5

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, developed by N. Metropolis (1953) and updated
by W.K. Hastings (1970), provides a generic way to construct a suitable transition
operation for sampling from complex probability distributions

Steps of the Metropolis-Hastings algorithm:

1. Propose new state: When the current state is x, propose a new state x′ with
a proposal probability q(x → x′)

2. Calculate the Hasting’s ratio (the acceptance probability):

r = min

(
1,

p(x′) q(x′ → x)

p(x) q(x → x′)

)
,

where the min-operation is used to restrict the value of r to the range [0, 1]
3. Accept or Reject the proposed state: draw a random number u ∈ [0, 1)

- If u < r, then xn+1 = x′ and x′ is accepted as a new element of the Markov
chain
- If u ≥ r, then xn+1 = x and x′ is rejected as a new element of the Markov
chain

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.6

Does this procedure fulfil the condition of detailed balance?

To verify, work out transition probability W (x → x′) which is the product of the
proposal probability of the new state and acceptance probability:

W (x → x′) = q(x → x′)
p(x′)q(x′ → x)

p(x)q(x → x′)
=

p(x′)

p(x)
q(x′ → x)

• assuming here without loss of generality that the Hastings ratio is ≤ 1

In this case, the inverse transition probability is given as (Hastings ratio is the
inverse of the one above but limited to be ≤ 1)

W (x′ → x) = q(x′ → x) · 1

Combining both equations above give the condition of detailed balance

p(x) ·W (x → x′) = p(x′) ·W (x′ → x)

If the Hastings ratio is in fact > 1 one interchanges x and x′ in the reasoning

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.7

The Metropolis-Hastings algorithm

The proposal probability q(x → x′) can be fairly arbitrary – it only needs to be
ergodic.

• Ergodic: All states must be reachable through successive applications of q. This
ensures that the Markov Chain can explore the entire state space given enough
time

The Markov Chain Monte Carlo (MCMC) created by the algorithm will eventually
produce a fair sample of the target distribution p(x)

• As the number of iterations goes to infinity, the distribution of the states in the
Markov Chain approaches the target distribution p(x)

This result is remarkable and worth contemplating. For further details, see lecture
notes by Volker Springel or Numerical Recipes

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.8

The Metropolis-Hastings algorithm

Unlike independent samples from a distribution, the sequence of states in a Markov
Chain is correlated

• This means that each state depends on the previous state, introducing correla-
tions between successive samples

Consequently, traditional error estimates for MC integration do not apply to MCMC

• alternative methods are used that compute, for example, the covariance matrix
and the autocorrelation function

Nevertheless, Markov Chains are the workhorses of many Monte Carlo codes today
due to their flexibility and ability to sample from complex distributions

• They are extensively used in statistical physics, Bayesian statistics, and machine
learning

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.9

Metropolis update

This is the special case known as theMetropolis algorithm, in which the stochastic
proposal operator is symmetric, i.e. q(x → x′) = q(x′ → x)

The acceptance probability simplifies to the Metropolis ratio:

r = min

(
1,

p(x′)

p(x)

)
(1)

• A proposed move to a state of higher probability is always accepted
• Sometimes, a move to a proposed state of lower probability is also accepted

The simplest form of such a symmetric update would be:

q(x → x′) : x′ = x+ e,

where e is distributed symmetrically around zero and is independent of x

For example, e could be drawn from a normal or uniform distribution of some
prescribed width

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.10

Example: Samples from a bivariate normal distribution
generated with the Metropolis-Hastings algorithm

Generate samples of a PDF with the Metropolis-Hastings algorithm. Use

2D Gaussian distribution, zero mean, standard deviation 1, covariance 0.6

Update q(x → x′) with uniform distribution with variable “reach”

Start at unlikely location

Monitor the acceptance rate of the MH update step

Hint: Use the partial R code MCexample3 fragment.ipynb as a starting point. You
need to provide the Metropolis-Hastings part yourselves.

What do you conclude about the step size in the random walk?

What is your assessment of the initial samples in the beginning of the chain?

What is the correlation among your samples?

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.11

Example: Samples from a bivariate normal distribution
generated with the Metropolis-Hastings algorithm

Metropolis-Hastings algorithm ▷ TOC ▷ FIN 5.12

