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Quick and dirty confidence intervals: Bootstrap Monte Carlo I

Sometimes the probability distribution function (PDF) is unknown, making it
difficult to perform a reliable Monte Carlo simulation

Perhaps all we have is a given sample with no information about the underlying
PDF

Is there still a way to derive confidence intervals for a given estimator using Monte
Carlo simulation?

The answer is yes! and the method is called Bootstrap Monte Carlo (or just
Bootstrap for short)

Key Idea: By repeatedly resampling the given data, we can create new datasets
that mimic the original sample

This approach allows us to estimate the variability of the estimator without knowing
the true distribution
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Quick and dirty confidence intervals: Bootstrap Monte Carlo II

Assumption: We have a sample that consists of N independent and identically
distributed (iid) data “points”

• a “point” can be complex object (e.g., vector, matrix, . . .)
• iid means that the points are independent of each other and the sequential order
does not matter

Bootstrap procedure: Given the original dataset D(0)

• Generate new datasets D(1), D(2), . . . of the same size N by drawing points
from D(0) with replacement

• Approximately e−1 ≈ 37% of the original points will be omitted each time
• for each dataset calculate the statistic of interest ai

Approximate theorem: The bootstrap statistics a1, a2, . . . are distributed around
a0, similarly to how a0 is distributed around the true value atrue

• This implies that the variance among the a1,2,3,... provides an estimate of the
variance of a0

Suggested number of artificial data sets: ≥ N ln(N)2 (as a rule of thumb)
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Quick and dirty confidence intervals: Bootstrap Monte Carlo III

Example: If we are interested in the mean, we calculate the mean for each
bootstrap sample and then assess the spread of these means to estimate the
confidence interval

Caveat 1: i The original data set D0 must be a good representation of the
underlying population for the bootstrap estimates to be meaningful. If the original
sample is biased or not representative, the bootstrap samples will also be biased

Caveat 2: The iid (independent and identically distributed) assumption should
hold. This means that each data point in the original sample should be drawn
independently from the same distribution. Violations of this assumption can lead
to incorrect confidence intervals
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Example: confidence intervals of a correlation coefficient
In previous exercises you determined the correlation coefficient among the results of
students at Heidelberg University. Now, we address a different question: since we
only had finite samples, how well can we determine the actual underlying correlation
coefficient for the (hypothetical) world-wide population of students taking exams?
The R command cor.test() provides an answer by giving confidence intervals of the
sample correlation coefficient:

>cor.test(r[,1],r[,2])

...

95 percent confidence interval:

0.5613007 0.6923753

sample estimates:

cor

0.6313255

We have not covered the underlying theory yet. However, using the Monte Carlo
approach, can you confirm the confidence interval by running a bootstrap Monte
Carlo simulation? For simplicity, we’ll use one sample, PEP1 vs PEP2. I’ve provided
a modified file, pep1 ws17-pep2 ss18nozeros.txt, where zero results have been
eliminated.
cor(), quantile(), sample() will be useful here → bootstrap.ipynb
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