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Overview

Maximum Likelihood estimation (MLE) is a method to estimate the parameters of
a statistical model by maximizing the likelihood function, which measures how well
the model matches the data

MLE has two realms of application:

• describe data and fit parameters
• find estimator for property of population underlying a given sample

Earliest techniques developed by Gauss, Legendre; modern formulation by
R.A. Fisher (1912)

The two fields of application are closely linked. One relies mostly on numerical
techniques, while the other uses analytical techniques
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Overview

Maximum Likelihood estimation is a parametric method, which assumes that the
data can be described by a specific functional form (a model) that depends on a
set of parameters

• This model must be a generative model, which describes how data is generated
in terms of a probabilistic process, including the parameters that govern the
distribution of the data

• More formally, a generative model is a statistical model of the joint probability
distribution P (X,Y ) on a given observable variable X and target variable Y ,
and it can be used to ”generate” random instances of an observation x

Objective of MLE: identify the parameter values that best describe the given data

In simpler terms: MLE tries to find the optimal way to fit a distribution to the data

The best fitting parameters could/should provide insights into the properties of the
data
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Maximum Likelihood Estimation: Basic idea

A Probability Density Function (PDF) and a likelihood function are related but
distinct concepts:

• A PDF p(x) is a function of x and indicates the probability density of observing
a particular data point from the population (the parameters of the distribution
are fixed)

• A likelihood function L(θ) takes the observed data as given and indicates the
likelihood of the parameters θ given this data (the data are fixed)

For continuous PDFs, the likelihood is often a high-dimensional probability density
with respect to the data xi, not with respect to the parameters

To illustrate the difference, consider a random scalar variable X with a given PDF
p(x)

• Let’s say that p(x) is a univariate Gaussian distribution with two parameters, µ
and σ, which are fixed

• A sample of X is taken: x1, x2, . . . , xn, assuming all xi are mutually independent
for simplicity

• The joint probability density of these observations is the product of their individual
probabilities L = p(x1)× p(x2)× . . .× p(xn)
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Maximum Likelihood Estimation: Basic idea

Once we have taken the sample x1, x2, . . . , xn, we know the values

What we do not know for the specific sample are the values for the parameters µ
and σ, which will likely differ from the original population values due to sampling
variability

To estimate their values, we need to adjust these parameters until some optimization
criterion is satisfied

In this example, the joint probability density expressed as a function of µ and σ
(with the data given) is the likelihood function:

L(µ, σ|x1, x2, . . . xn) =
n∏
i=1

p(xi|µ, σ)
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Maximum Likelihood Estimation: Basic idea

The central idea of MLE is to find the parameter θ that maximizes the likelihood
function L(θ | x1, x2, . . . , xn) for the given data set

A useful transformation is to take the natural logarithm of the likelihood function
to obtain the log-likelihood function, lnL. Since ln is a monotonous function the
maximum is the same

lnL =

n∑
i=1

ln p(xi|θ)
This is computationally simpler and numerically more
stable than multiplying probabilities directly

To find the maximum of the log-likelihood, we set the derivative with respect to θ
to zero: ∂ lnL

∂θ

∣∣
θ=θ̃

= 0

θ̃ is called the maximum likelihood estimate of the true value of θ
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The standard case: normal distribution

Consider xi drawn from a normally distributed population, so that for each x ∈ {xi}

p(x|µ, σ) = 1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
so that the log-likelihood function is

lnL(µ, σ|{xi}) = −n lnσ − n

2
ln 2π − 1

2σ2

n∑
i=1

(xi − µ)2

(work it out →blackboard)

Maximizing lnL has a close connection to the least-squares technique

• In the least-squares approach, we minimize
∑n
i=1(xi − µ)2, and its equivalent

here is maximizing the term − 1
2σ2

∑n
i=1(xi − µ)2 in the log-likelihood function
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Example 1: Plot the log likelihood for population parameters
and some others

Draw 10 samples of size 3 each from an univariate normal distribution with
N(µ = 2.0, σ = 0.5)

Compute the log-likelihood function for a range of µ values which should include
the true µ of the population

Repeat the process for 10 samples of size 30

Plot all 20 log-likelihood functions on top of each other!

Is the maximum of the log-likelihood functions always at µ?

How does the shape change with increasing sample size?
Try it out, then →day06 example1.ipynb
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Example 2: Derive an estimator for µ and σ of a Normal
distribution

→ blackboard
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Example 3: Derive an estimator for expectation value λ of a
Poisson distribution

Let us now consider the Poisson distribution

Since the variance and expectation value of a Poisson distribution is the same
(denoted by λ), there are at least two possible ways to compute it from a sample
of counts r1, r2, . . . , rn:

λ̃ =
1

n

n∑
i=1

ri or perhaps λ̃ =
1

n− 1

n∑
i=1

(ri − r)2 .

Derive the ML estimator of λ. The likelihood function is given by:

L(λ | {ri}) =
n∏
i=1

e−λλri

ri!
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Worked example: Fitting a straight line to data

We have been using MLE to estimate parameters of probability distributions. Now,
we will see how MLE can be applied to fit a model to data

Consider the data points (xi, yi ± si) for i = 1, . . . , N :

• xi and si are considered known and are not modeled
• yi are the observed data points with associated uncertainties si

Our goal is to fit these data points with a linear model: yi = b+mxi

Measurement of yi is subject to noise; each yi deviates from its true value due to
a random offset drawn from a Gaussian distribution with standard deviation si:

yi ∼ N(yi,true, s
2
i ) = N(b+mxi, s

2
i )

Implicit in this model is the assumption of statistical independence of the data
points

Parameters: We wish to determine the best-fitting values of b (intercept) and m
(slope) that describe the data
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Worked example: Fitting a straight line to data

Given the model yi = b + mxi + ϵi where ϵi ∼ N(0, s2i ), we can write the
log-likelihood function as:

lnL(b,m) = −
n∑
i=1

ln si −
n

2
ln 2π −

n∑
i=1

(yi − b−mxi)
2

2s2i

• Here, µ = b+mxi represents the expected value of yi.
Partial derivatives with respect to b and m, si are constants here
∂ lnL(b,m)

∂b
=

n∑
i=1

(yi − b−mxi)

s2i
(1)

∂ lnL(b,m)

∂m
=

n∑
i=1

(yi − b−mxi)xi
s2i
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Worked example: Fitting a straight line to data

Setting these partial derivatives to zero yields the maximum likelihood estimates,
resulting in the following linear system of equations:( ∑

i s
−2
i

∑
i xis

−2
i∑

i xis
−2
i

∑
i x

2
is

−2
i

)(
b
m

)
=

( ∑
i yis

−2
i∑

i yixis
−2
i

)

In the context of least-squares estimation, these equations are called the normal
equations

The square matrix on the LHS is called the normal equation matrix N.

It is a symmetric K ×K matrix, where K is the number of parameters

• In our case, K = 2 for parameters b and m.

The normal equation matrix encapsulates the weighted contributions of each data
point to the estimation process

• Each element in the matrix is a sum of weighted values, where the weights are
inversely proportional to the variance s2i of the observations
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Worked example: Fitting a straight line to data

Maximum likelihood estimation (MLE) always reduces to weighted least squares if
the following conditions are met:

• the data model is linear in the parameters. This means the model can be written
as: θ1f1 + θ2f2 + . . . + θKfK, where θi are the parameters and fi are known
arbitrary functions of auxiliary data

• independent, known Gaussian errors are assumed. This implies that the errors in
the measurements are uncorrelated and have a normal distribution with a known
variance

In such cases, MLE and least squares provide equivalent parameter estimates

The normal equations derived from the MLE process can be solved using standard
linear algebra procedures to obtain the best fitting parameters b̃ and m̃.

• In R, you can use the solve() function to solve the system of normal equations.
• To ensure clarity and manageability of your matrices, it’s helpful to assign names
to the columns and rows using rownames() and colnames() functions.
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Sample R code for solving normal equations

# Example R code for solving normal equations

N <- matrix(c(sum(1/s^2), sum(x/s^2), sum(x/s^2),

sum(x^2/s^2)), nrow=2, ncol=2)

y <- c(sum(y/s^2), sum(y*x/s^2))

# Assigning names to rows and columns

rownames(N) <- colnames(N) <- c("b", "m")

# Solving the normal equations

params <- solve(N, y)

b_est <- params["b"]

m_est <- params["m"]

cat("Estimated parameters:\n")

cat("b =", b_est, "\n")

cat("m =", m_est, "\n")
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Interlude: correlation and regression

There is a close relationship between correlation analysis and fitting straight lines
by the least squares method. Consider n data points (xi, yi) and the following
abbreviations:

σ2
x =

1

n− 1

n∑
i=1

(xi − x)2 σ2
y =

1

n− 1

n∑
i=1

(yi − y)2

Cov[x, y] =
1

n− 1

n∑
i=1

(xi − x)(yi − y) How is the function cov defined in R?

Here, x and y are the arithmetic means of xi and yi, respectively

It turns out that the estimated slope m̃, intercept b̃ of a fitted straight line, and
the correlation coefficient r between xi and yi can be written as:

m̃ =
Cov[x, y]

σ2
x

b̃ = y − m̃ x r =
Cov[x, y]

σxσy
= m̃

σx
σy
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How good is the Maximum Likelihood fit?

After determining the best fitting parameters, the next question is:
how good is the fit?

Intuitively, the goodness of fit is related to the deviations between data points yi
and the fitted line

If the model of the data is correct and linear then the sum of weighted residuals

Q =

N∑
i=1

(yi − b̃− m̃ xi)
2s−2
i

is distributed as a χ2-distribution with N −K degrees of freedom, where N is the
number of data points and K the number of parameters fitted

Q is often referred to as the “χ2 of the fit”

The χ2 distribution with k degrees of freedom, denoted by χ2
k, has the following

properties

E
[
χ2
k

]
= k and Var

[
χ2
k

]
= 2k
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How good is the Maximum Likelihood fit?

The fit is considered “good” if Q is around (N −K)±
√
2(N −K)

• If Q is much larger than N −K, the fit may be poor, indicating that the model
may not accurately describe the data

• If Q is much smaller than N −K, the model might be overfitting the data

Statistical fluctuations – like always – are possible, so some deviation from the
expected range is normal

Sometimes the “reduced” χ2
red ≡ Q

N−K is used

• rough rule of thumb for an acceptable fit: χ2
red ≈ 1

Another important question is: how precise are the fitted parameters? This is a
separate issue...

• If the error bars are large the fit can be good but the parameters may not be
precise

• Conversely, if the error bars are small because uncertainties have been underesti-
mated (or the data model is incorrect), the fitted parameters can be very precise
but the fit can be very poor
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Interlude on precision, trueness, accuracy

In Physics, quantities without error bars have little value, as they lack information
about their reliability and uncertainty

ISO definitions:

• Precision: The closeness of repeated measurements to each other
• Trueness: The closeness of the mean of the measurement results to the actual
(true) value

• Accuracy: The closeness of a measurement to the true value, combining both
precision and trueness
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What is the precision of the estimated parameters in MLE?

The precision of estimated parameters in MLE is related to the “sharpness” or
curvature of the peak of the likelihood function.

For the given case (linear model with Gaussian errors), the covariance matrix of
the vector θ of fitted parameters is given by:

Cov
[
θ̃, θ̃

T
]
≡

 Cov
[
b̃, b̃

]
Cov

[
b̃, m̃

]
Cov

[
m̃, b̃

]
Cov[m̃, m̃]

 =

(
−∂

2 lnL
∂θ∂θT

∣∣∣∣
θ̃

)−1

This equation shows that the covariance of the fitted parameters is given by
the negative inverse of the Hessian matrix (matrix of second derivatives) of the
log-likelihood function

The negative Hessian (non-inverted matrix) is known as the information matrix
or Fisher information

• The Fisher information matrix provides a measure of the amount of information
that the data contains about the parameters. A high Fisher information value
indicates that the parameter is estimated with greater precision
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What is the precision of the estimated parameters in MLE?

In the linear regression problem, the normal equations matrix N is the information
matrix. This means that:

Cov
[
(b̃, m̃)T, (b̃, m̃)

]
= N−1

The normal equations matrix N is formed as follows:

N =

( ∑
i s

−2
i

∑
i xis

−2
i∑

i xis
−2
i

∑
i x

2
is

−2
i

)

The inverse of this matrix, N−1, provides the covariance matrix of the estimated
parameters (b̃, m̃).

The diagonal elements of N−1 give the variances of b̃ and m̃:

Cov
[
b̃, b̃

]
= [N−1]11, Cov[m̃, m̃] = [N−1]22

• These can be used to specify confidence limits on a particular parameter
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What is the precision of the estimated parameters in MLE?

The off-diagonal elements of N−1 provide the covariances between b̃ and m̃:

Cov
[
b̃, m̃

]
= Cov

[
m̃, b̃

]
= [N−1]12

• These covariances can be used to calculate the correlation coefficients
• In R, you can use the function cov2cor() to convert a covariance matrix to a
correlation matrix

In the present case of weighted linear regression the covariance matrix of the
parameters depends only on xi, si but not on the data yi. This means it can
be calculated even in the absence of real data, giving an a-priori estimate of the
precision of a parameter that can be obtained in a given set-up. This is extremely
useful when is comes to the planning of experiments

Title of a book of R.A. Fisher: The Design of Experiments (1935)
(also introduces the concept of the null hypothesis → later)

→ example Blackboard and day06 linefit demo.ipynb
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More general MLE

Previously, we discussed the simple case of MLE

• linear in parameters
• Gaussian errors (albeit heteroscedastic errors)
• independent errors
• However, MLE can handle more complex situations:
⋆ Errors in both xi and yi that need to be fitted
⋆ Correlated errors between yi and xi
⋆ Non-linear models for the data

MLE more general than being restrictic to Normal PDF
(have already seen Poisson example)

Key points to consider:

• The statements previously made are approximately correct in the limit of large
sample sizes or not very non-linear data models

• This might sound worrisome, but MLE generally behaves well
• Monte Carlo experiments can be conducted to verify analytical results
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The Cramér-Rao bound (Rao 1945, Cramer 1946)

The Cramér-Rao inequality states: The variance of any unbiased estimator is at least
as high as the inverse of the Fisher information. Formally: for any estimator (function)
ψ(θ) of θ the following inequality holds:

σ2
ψ ≥ ∂ψ

∂θ

T

E

[(
−∂

2 lnL
∂θ∂θT

)−1
]
∂ψ

∂θ

Example: take ψ(θ) = θ1 ⇒ σ2
θ1

≥ E

[(
−∂2 lnL
∂θ∂θT

)−1
]
(1,1)

While the Cramér-Rao theorem is a statement about the likelihood function and
not directly ML estimation, it shows that ML estimators can be nearly optimal as
long as the expectation of the Hessian can be replaced by its value at the estimated
parameters

This means: while an ML estimator may be biased, any unbiased estimator (if it
exists) cannot have a smaller variance (is more efficient) than the ML estimator
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Practical approach for non-linear MLE

We have seen that MLE might give biased estimates

However, MLE becomes unbiased for large sample sizes (N vs N − 1)

Often (not too small samples, not too non-linear data models) MLE approaches
the Cramér-Rao bound and we can (like in the linear case) approximate

Cov
[
θ̃, θ̃

T
]
≈

(
−∂

2 lnL
∂θ∂θT

∣∣∣∣
θ̃

)−1

(mnemonic version!)

General MLE ▷ TOC ▷ FIN 5.3



Summary of L(θ) and generalized MLE

Consistency: for large sample sizes N , the MLE converges to the true parameter
value. This means that as the number of data points increases, the MLE becomes
more accurate.

Invariance: If the MLE of θ is θ̃ and Ψ(θ) is some arbitrary transformation
of the parameters, then Ψ(θ̃) is the MLE of Ψ̃(θ). This property ensures that
transformations of MLE estimates are still MLE estimates

Large-sample efficiency: For large samplie sizes N , the MLE is at least as
accurate as any other estimator. This means that in large samples, MLE provides
the smallest possible variance among unbiased estimators

Near-optimality: While the MLE may be biased, any unbiased estimator (if it
exists) cannot have a smaller variance (is more efficient) than the MLE. This
property is linked to the Cramér-Rao bound

Sufficiency: Under certain conditions, the likelihood function L(θ |xi) summarizes
all the information there is about θ in the data (assuming the data model is
correct!) – thus no need to keep the xi (this is the data reduction principle)
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Summary of L(θ) and generalized MLE

Likelihood ratio: asymptotically, 2 ln
[
L(θ̃)/L(θtrue)

]
∼ χ2

k. This means that the

ratio of the likelihoods of the estimated parameters to the true parameters follows
a chi-squared distribution with k degrees of freedom in large samples

Covariance: Cov
[
θ̃, θ̃

T
]
≥

(
−∂2 lnL
∂θ∂θT

∣∣∣
θ̃

)−1

. This is approximately the Cramér-

Rao bound, indicating that the covariance matrix of the MLE estimates is bounded
by the inverse of the Fisher information matrix
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Asymptotic behavior of the likelihood and confidence regions

For large sample sizes, the ratio of the likelihoods evaluated at the esti-
mated parameters and the true parameters follows a chi-square distribution:

2 ln
[
L(θ̃)/L(θtrue)

]
∼ χ2

k, where k is the number of parameters k = dim(θ)

This property allows us to construct confidence intervals and confidence regions

• confidence interval: interval of “trust” for a single parameter, irrespective of the
value of the other parameters (→ marginalization)
⋆ This provides a range of values for a single parameter that is likely to contain
the true parameter value with a certain probability (e.g., 68% for 1σ confidence
interval).

• confidence region: (sub)region of “trust” of parameter space considering several
(perhaps all) parameters simultaneously
⋆ This extends the idea of a confidence interval to multiple parameters, creating
a region in parameter space where the true parameter values are likely to be
found.
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Asymptotic behavior of the likelihood and confidence regions

The difference between the estimated parameters and the true parameters, ∆θ ≡
θ̃ − θtrue, follows a multi-variate normal distribution:

P(∆θ) = const× exp

(
−1

2
∆χ2

)
= const× exp

(
−1

2
∆θTCov

[
θ,θT

]−1

∆θ

)

where ∆χ2 is related to the covariance matrix of the paramerers

• This relation shows that ∆χ2-contours correspond to confidence regions in the
parameter space

in practice, to calculate confidence intervals or regions, you need to evaluate the
likelihood function over a grid of parameter values and identify the regions where
the likelihood is within a certain threshold of its maximum value

for example, in the case of straight-line fitting, you could varym and b and calculate
χ2 for each combination, and then plot the contours of constant ∆χ2
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Example: likelihood ratio for straight line fitting

∆χ2 contours and error bars
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In linear regression, the
change in χ2, ∆χ2, is a
quadratic form near the Max-
imim Likelihood estimate. In
the non-linear case only ap-
proximately (to leading or-
der).

∆χ2(∆θ) = ∆θTN∆θ

where ∆θ represents the dif-
ference between the esti-
mated parameters and their
true values

∆θ =

(
b− btrue
m−mtrue

)
The contours in the ∆χ2 plot represent regions of equal likelihood
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∆χ2 and confidence levels
∆χ2 contours and error bars
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(from Numerical Recipes)

R: qchisq(p,ν)

The solid lines in the ∆χ2 plot represent the ±1σ confidence interval for single
parameter, and the dashed lines represent the ±2σ interval

• For two parameters, the ∆χ2 value corresponding to a 68% confidence region is
2.3, not 1. This is because the confidence region is a joint probability over two
parameters

• The table on the right shows critical values of ∆χ2 for different confidence levels
and degrees of freedom
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∆χ2 and confidence levels

To determine the confidence region for a set of parameters:

• Compute the χ2 value at the best-fit parameters
• Identify the contour where ∆χ2 reaches the critical value for your desired
confidence level

• The region inside this contour represents the confidence region

In R you can use the function qchisq(p, ν) to obtain the critical value of χ2 for
a given confidence level p and degrees of freedom ν
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