
Statistical Methods
(summer term 2024)

Bayesian parameter estimation

(based on original lectures by Prof. Dr. N. Christlieb and Dr. Hans-G. Ludwig)

Dr Yiannis Tsapras

ZAH – Heidelberg

Bayesian parameter estimation 0.1



Overview

Parameter estimation from the Bayesian point of view

Related to maximum likelihood estimation (MLE)

Mostly concerned with how to incorporate prior information to MLE, and paying
more attention to the resulting PDF

• MLE provides so-called point estimates, while Bayesian estimation provides
probability distributions for parameters

As the title suggests, it is a parametric method
(i.e. it makes assumptions about the underlying distribution of the data)

• aim: obtaining the full (joint) PDF of the probability (density/mass) function of
parameters

• allows one to derive summary statistics for parameters, such as means, variances,
covariances, etc.

Overview ▷ TOC ▷ FIN 1.1



Bayesian parameter estimation – basic idea

MLE: set-up the likelihood function and study its properties around the maximum

Bayesian: use Bayes’ theorem to obtain the probability of parameters θ given the
data D

P (θ|D,M) =
P (D|θ,M)P (θ,M)

P (D|M)

M is a model representing the background information, e.g. that the data were
drawn from a Normal distribution → generative model
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Bayesian parameter estimation – basic idea

The Bayesian interpretation of this relation for the model parameters θ is

posterior =
likelihood× prior

evidence

This relation is of deceiving apparent simplicity

• θ can be a parameter vector → potentially high dimensional problem
• the evidence (probability of the data) is often difficult to calculate
• not always possible to express prior information as a well-defined probability
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Bayesian parameter estimation – dealing with the problems

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
posterior =

likelihood× prior

evidence

The evidence (probability of the data) is independent of the parameters

• it is a normalization constant that can be ignored as long as one is only interested
in the shape of the posterior
⋆ the location of the maximum of the posterior is not affected

• once the posterior is obtained, it can be (perhaps numerically) normalized

Improper priors: sometimes the prior information, another model, or common sense
cannot be normalized

• e.g., when measuring a length s, it should be a positive quantity s > 0
How would you formulate probability density on s?

A frequently used shorthand notation is this

P (θ|D,M) ∝ L(D|θ,M)P ∗(θ|M) posterior ∝ likelihood× prior

the “∗” indicates a possibly improper or non-normalized prior
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The evidence as marginal probability

We mentioned that P (D|M) is called the evidence of model M

• We will use this later for model selection
• It allows us to compare different models to decide which one is more likely to be
correct given the data

Using the law of total probability, the evidence can be written as:

P (D|M) =

∫
P (D|θ,M)P (θ|M) dθ =

∫
likelihood(D|θ,M)× prior(θ|M) dθ

The evidence measures how well the model predicts the data, independent of the
specific parameter values θ

• It can be thought of as an average predictive ability of the model over all
plausible parameter values

• for a “fair” evaluation of the evidence, the prior must be normalized with respect
to the parameters θ, and the likelihood with respect to the data D, ensuring it
is a proper PDF with respect to the data
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The evidence as marginal probability

The product of likelihood and prior can be also seen as the joint probability density
of data and parameters

P (D ∩ θ|M) = P (D|θ,M)P (θ|M)

The process of integrating over one parameter is called marginalization

• Statistics lingo: We “marginalize out” a parameter
• One can also marginalize out more parameters to obtain the probability distribu-
tion of the remaining parameters

As the heading suggests, the evidence can be seen as the marginal probability of
the joint probability of data and parameters

• This means we marginalize out the parameter θ to obtain the probability of the
data given the model

P (D|M) =

∫
P (D|θ,M)P (θ|M)dθ
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Result of Bayesian estimation: (joint) PDF of the parameter(s)

The result of Bayesian estimation is the full probability density/mass function of
the parameters

• In multidimensional problems, this results in the joint PDF of the parameters

It provides a complete statistical description of the parameters

Often, we wish to summarize/characterize the posterior PDF in terms of:

• MAP (maximum a posteriori) estimate = mode, mean, or median, of the PDF
• variances and covariances of the parameters

The choice of summary statistic depends on the situation:

• In the case of non-Gaussian posteriors, one may want to characterize the posterior
using quantiles, which can also illustrate potential asymmetries

• In the case of a multi-modal posterior, one may want to report the location of
the maxima
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Exercise: Bayesian estimation – first try

Suppose we want to measure the intensity λ of a light source by counting the
number of photons, n, detected in a certain time interval. We assume that
n ∼ Poisson(λ).

Given n = 10 what is the estimate of λ?

L(n |λ) = λn exp(−λ)

n!
MLE: λ̃ = n = 10

(Exercise: can you show this?) →Blackboard

The MAP in Bayesian estimation gives the same result if the prior is flat

• for example, consider a prior that is flat between 0 and 100

But if the prior state of knowledge is that we have no idea of the order of magnitude
of λ then it can be argued that the cumulative probability of the prior should be
flat in log λ (Why?) implying a PDF inversely proportional to λ meaning

posterior PDF ∝ L(n |λ) λ−1 = exp(−λ)λn−1
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Exercise: Bayesian estimation – first try

So generally, one may write

posterior P (λ|n) ∝ L(n |λ)λk ∝ λn+k exp(−λ)

Complete the following table giving the result of the Bayesian estimate of λ

prior (λk) MAP E(λ|n) (mean)

λ0 = const n ?
λ−1 ? ?

Note, that the priors we are using are improper, i.e. cannot be normalized

The following auxiliary formula coming from the Γ-function helps∫ ∞

0

λn exp(−λ) dλ = n!
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Interlude: the quadratic approximation
Posterior distributions over a model parameter P (θ|D) are often ”peaky” around a
single mode.

Similar to the log likelihood, we want to consider a posterior F ≡ lnP (θ|D) and
Taylor-expand F in the vicinity of the mode θ̃.

F (θ) ≈ F (θ̃) + (θ − θ̃)
dF

dθ

∣∣∣∣
θ̃

+
1

2
(θ − θ̃)2

d2F

dθ2

∣∣∣∣
θ̃

• Since dF
dθ

∣∣
θ̃
= 0 at the maximum (mode), the linear term drops out, simplifying

the expression to:

F (θ) ≈ F (θ̃) +
1

2
(θ − θ̃)2

d2F

dθ2

∣∣∣∣
θ̃

The exponential of the above expansion for F , giving back P , is:

P (θ|D) ≈ A exp

(
1

2
(θ − θ̃)2

d2F

dθ2

∣∣∣∣
θ̃

)
with A ≡ exp(F (θ̃))
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Interlude: the quadratic approximation

P (θ|D) ≈ A exp

(
1

2
(θ − θ̃)2

d2F

dθ2

∣∣∣∣
θ̃

)
with A ≡ exp(F (θ̃))

This is a Gaussian distribution with mean θ̃ and variance:

σ2 =

(
− d2F

dθ2

∣∣∣∣
θ̃

)−1

The quadratic approximation simplifies the analysis by approximating the posterior
distribution with a normal distribution centered at the mode θ̃ with a variance given
by the inverse of the second derivative of F

The quadratic approximation can be very useful for large or complex models where
exact analytical solutions are infeasible
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Interlude: the quadratic approximation

In multiple dimensions, this generalizes to (using the Hessian matrix):

Cov
[
θ̃, θ̃

T
]
=

(
− ∂2F

∂θ∂θT

∣∣∣∣
θ̃

)−1

Looks familiar if we associate F with lnL (the log-likelihood)

In Bayesian estimation, improper priors can lead to posteriors that cannot be
normalized

• In such cases, the variance cannot be computed directly

By fitting a Gaussian to the peak of the posterior PDF, the quadratic approximation
allows us to compute an approximate variance

• The accuracy of this approximation depends on the problem
• The posterior should not deviate too much from a Gaussian for this approximation
to be valid
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Interlude: transforming random variables

Suppose we are given a PDF PX(x) of a random variable X. We subject x to a
variable transformation y = y(x)
We now ask: What is the PDF PY (y) of the new random variable Y ?

The principle of conservation of probability states that the probability must be
conserved under the transformation: |PX(x) dx| = |PY (y) dy| so that

PY (y) = PX(x)

∣∣∣∣dxdy
∣∣∣∣ = PX(x(y))

∣∣∣∣dxdy
∣∣∣∣ (for a 1D transformation)

In j dimensions this generalizes to vectorial variables/functions:

PY (y) = PX(x(y))

∣∣∣∣∂(x1, ..., xj)

∂(y1, ..., yj)

∣∣∣∣
Here, x and y are vectors, and

∣∣∣∂(y1,...,yj)∂(x1,...,xj)

∣∣∣ is the determinant of the Jacobian

matrix of the transformation

→ Example: normalized (standardized) Gaussian variables →Blackboard
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Interlude: linear transformation of random vectors

When you apply a linear transformation to a random vector x, the resulting vector
y can be expressed as: y = c + Ax, where c is a fixed vector (constant shift)
and A is a fixed matrix (which scales, rotates, or otherwise linearly transforms the
vector x

The expectation vector E[y] is given by: E[y] = c+AE[x]

• ”the expectation of the transformed vector y is the mean of x scaled by A and
then shifted by c”

The covariance matrix of y is given by: Cov
[
y,yT

]
= ACov

[
x,xT

]
AT

• ”the covariance of the transformed vector y is obtained by scaling the covariance
of x by A on the left and by AT on the right”

(Physicists may recognize this as similar to rotation and transformation to the
principal axes of ellipsoids, which is a common technique in mechanics and
quantum mechanics)
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Example: Linear transformation of a random vector

Given:

A random vector x with:

• mean E[x] =

(
2
3

)
and covariance matrix Cov

[
x,xT

]
=

(
1 0.5
0.5 2

)
A linear transformation defined by:

• c =

(
1
−1

)
and A =

(
2 0
0 3

)

Use R to find:

The mean vector E[y] and covariance matrix Cov
[
y,yT

]
of the transformed vector

y

R Hints: use the matrix function and %*% to perform matrix multiplication. The
transpose of matrix A is given by the command t(A)
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Example: Linear transformation of a random vector

Solution:
1. Mean Vector:

E[y] = c+AE[x] =

(
1
−1

)
+

(
2 0
0 3

)(
2
3

)
=

(
1
−1

)
+

(
4
9

)
=

(
5
8

)
2. Covariance Matrix:

Cov
[
y,yT

]
= ACov

[
x,xT

]
AT =

(
2 0
0 3

)(
1 0.5
0.5 2

)(
2 0
0 3

)
=

=

(
2 1
1.5 6

)(
2 0
0 3

)
=

(
4 3
3 18

)

in R → day7 example linear transform.ipynb
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Interlude: summing random variable

Given two independent random variablesX and Y , distributed as PX(x) and PY (y),
respectively, we can ask what is the distribution PZ of the sum Z ≡ X + Y ?

Since X and Y are independent, we can write PY (y|x) = PY (y)

By the law of total probability

PZ(z) =

∫ +∞

−∞
PY (y = z − x|x)PX(x) dx =

∫ +∞

−∞
PY (z − x)PX(x) dx

so that PZ = PX ∗PY , where “∗” denotes the convolution of the two distributions

Summary: When summing two independent random variables X and Y , the
distribution of their sum Z can be found using the convolution of their individual
distributions

• The convolution can be interpreted as a ”smoothing” operation that combines
the two functions
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Another example: Should Sam Guy play?

Let’s say Mr Sam Guy is a basketball player who plays in the American NBA league.
His performance over the last season was quite good by NBA standards in terms of
his 3-point scores, namely having 79 scores in 209 shots taken But in the first quarter
of the current season his performance has apparently dropped, with only 15 scores
in 50 shots taken. If you were the coach of the team would you pick him to play
in forthcoming matches, or would you start looking for a replacement? What does
statistics tell you?

We want, of course, consider Mr Guy’s scoring performance as a random experiment.
Scoring or not-scoring is obviously a Bernoulli experiment, following binomial statistics.
However, we are not so much interested in the actual number of points scored but
rather (in the spirit of Thomas Bayes) in the PDF of Mr Guy’s “scoring probability”.
Let’s call it p. The question is this: what PDF of p can we expect of Mr. Guy for the
rest of the current season, after he performed comparatively poorly during the first
quarter?

Before you go into this, here’s a story about conjugate priors and the Beta distribution
. . . → blackboard
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Exercise: Should Sam Guy play?

1. Consider Mr. Guy’s scoring performance in the last and current season as separate
random experiments, and plot the PDFs of p which describe his “scoring statistics”
in the respective seasons. Assume an uninformative prior (using the β-distribution)
in both cases.

2. Looking at Mr Guy’s performance of the current season only: would you let him
continue to play? Any hit-rate below 30% is considered below NBA standards.

3. Now use the posterior of last season as prior for the current season. Based on the
new combined posterior: would you let him play?
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Laplace’s sunrise problem

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
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4
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6

First five sunrises in the life of Laplace

P(sun rises tomorrow)

P
D

F
(P

)

initial ignorance

Predicting the probability that the
Sun is rising the next day from a
purely statistical point of view

The plot shows how Laplace’s opin-
ion evolves from day to day

From complete ignorance (red line)
to something more peaked towards
p = 1 after having observed 5 sun-
rises (blue-violet line)

Expectation E[p] perhaps more
informative than MAP (always
pMAP = 1) here

Laplace’s rule of succession: E[p] = 1+k
2+n (k #successes, n #trials)
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